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According to a McKinsey report this February, business 
leaders are almost evenly split in their preference 
between open-source and proprietary AI. Additionally, 
Deepseek has demonstrated that open-source AI 
matches the performance of its proprietary counter-
parts, much like a tsunami sweeping through the indus-
try.

In the rapidly evolving world of artificial intelligence (AI), 
open source solutions have emerged as a powerful tool 
for businesses seeking to implement AI in production. 
These solutions offer not only a cost-effective alterna-
tive to proprietary software but also bring a wealth of 
resources and community-driven support. The growing 
adoption of open source AI in production environments 
is driven by several factors:

Cost: One of the primary attractions of open source AI 
is its cost efficiency. Organizations can save signifi-
cantly on licensing fees, which can be prohibitive with 
proprietary AI solutions. Additionally, open source AI 
offers unparalleled flexibility and customizability. 
Companies can tailor the software to meet their specif-
ic needs without the restrictions typically imposed by 
closed systems.

The community support surrounding open source 
projects is another significant benefit. A vast network of 
developers contributes to continual improvements and 
innovations, ensuring that the software evolves quickly 
to meet the demands of modern AI applications. 
Furthermore, the transparency of open source AI 
builds trust, as users can verify the integrity and 
fairness of the algorithms themselves.

Challenges of Implementing Open Source AI in 
Production Despite its advantages, open source AI 

presents certain challenges. Technical support can be 
sporadic, and organizations might need to rely on com-
munity forums or hire specialists for maintenance and 
troubleshooting. Integration with existing systems can 
also pose challenges, requiring skilled professionals to 
ensure smooth operation.

Moreover, the quality and reliability of open source 
projects can vary greatly. Organizations must carefully 
select projects with active maintenance and a robust 
user base to ensure they are adopting a reliable solu-
tion.

Real-World Applications : Many industries have 
successfully integrated open source AI into their 
production processes. For example, in healthcare, open 
source algorithms are being used to predict patient 
outcomes and optimize treatment plans. In the auto-
motive industry, open source AI assists in everything 
from automated driving functions to predictive mainte-
nance.

Looking forward, the influence of open source AI is only 
expected to grow. It plays a crucial role in democratizing 
AI technology, making powerful tools accessible to a 
broader range of businesses and developers. As the 
community continues to expand and technology 
advances, open source AI will remain at the forefront of 
innovation in production environments.

Open source AI offers a promising path for organiza-
tions looking to leverage AI technology in production. By 
understanding its benefits and navigating its challeng-
es, businesses can effectively harness the power of 
community-driven AI to drive innovation and maintain 
competitive advantage in their industries.
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Microsoft released 2 open source models : Phi-4-multimodal and Phi-4-mini, the newest models in Microsoft’s Phi 
family of small language models (SLMs). These models are designed to empower developers with advanced AI capabil-
ities. Phi-4-multimodal, with its ability to process speech, vision, and text simultaneously, opens new possibilities for 
creating innovative and context-aware applications. Phi-4-mini, on the other hand, excels in text-based tasks, provid-
ing high accuracy and scalability in a compact form.

Qwen is a series of large language models (LLMs) independently developed by Alibaba Cloud.

Meta is the front runner of open source LLMs and develops the Llama family of models.

Microsoft

Qwen

Meta

Mistral

Open Hermes

NVIDIA

Nous 

OPENSOURCE AI MODELS

Mistral offers several open source model from Mistral Small, to Pixal ( multimodal ) to research models such as Codes-
tral for coding

OpenHermes Mistral is a state of the art Mistral Fine-tune, provided by OpenHermes which trained on additional code 
datasets. OpenHermes was trained on 1,000,000 entries of primarily GPT-4 generated data, as well as other high qual-
ity data from open datasets across the AI landscape.

NVLM is a family of multimodal LLMs developed by NVIDIA

Nous Research developed Hermes 3 contains advanced long-term context retention and multi-turn conversation 
capability, complex roleplaying and internal monologue abilities, and enhanced agentic function-calling. 
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Allen Institute develops open source language models, including a family of 7B and 13B models trained up to 5T tokens. 
As an example , OLMo 2 outperforms other fully open models and competes with open-weight models like Llama 3.1 
8B

SmolLM by Huggingface is a series of state-of-the-art small language models available in three sizes: 135M, 360M, and 
1.7B parameters. These models are built on a meticulously curated high-quality training corpus to run on device.

Stable Diffusion open sources Stable Diffusion 3.5 Large and Stable Diffusion 3.5 Large Turbo,....  These models are 
highly customizable for their size and can run on consumer hardware

DeepSeek

Gemma 2.0

Arcee

Ai2

Hugging Face

VideoWorld

Stability.ai

DeepSeek-R1 is an open-source language model designed to perform a variety of text-based tasks in both English and 
Chinese. With 671 billion parameters and a Mixture of Experts (MoE) architecture, it selectively activates only a portion 
of its parameters during operation, optimizing performance and reducing computational costs.

Janus-Pro-7B, developed by DeepSeek, is an advanced multimodal AI model designed for both image generation and 
analysis

Gemma 2.0 Flash is a part of Google's Gemini AI suite. It is an experimental model designed to enhance real-time inter-
action and multimodal capabilities. It introduces several notable features aimed at improving user experience and 
performance.

Imagen 3 is a highest quality text-to-image model, capable of generating images with even better detail, richer lighting 
and fewer distracting artifacts

The video generation experimental model "VideoWorld" was jointly proposed by the Doubao Big Model team, Beijing 
Jiaotong University, and the University of Science and Technology of China. Unlike mainstream multimodal models such 
as Sora, DALL-E, and Midjourney, VideoWorld is the first in the industry to realize the world cognition without relying on 
language models. 

Arcee developed Arcee-Maestro-7B-Preview, and a fast and efficient Mistral-based DeepSeek distillation we call 
Arcee-Blitz.
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Ollama is an open-source tool and allows users to run various open-source large language models (LLMs) locally on 
their own systems. 

BentoML is a open source Unified Serving Framework for AI/ML Systems.
BentoML is a Python library for building online serving systems optimized for AI apps and model inference. It supports 
serving any model format/runtime and custom Python code, offering the key primitives for serving optimizations, task 
queues, batching, multi-model chains, distributed orchestration, and multi-GPU serving.

ZenML is an extensible, open-source MLOps framework for creating portable, production-ready machine learning 
pipelines. By decoupling infrastructure from code, ZenML enables developers across your organization to collaborate 
more effectively as they develop to production.

Nebius has open-sourced a Kubernetes operator called "Soperator" to manage Slurm clusters on Kubernete towards 
running AI loads.

Langfuse is an open-source LLM engineering platform (GitHub) that helps teams collaboratively debug, analyze, and 
iterate on their LLM applications. All platform features are natively integrated to accelerate the development workflow.

Ollama

BentoML

OpenVINO

ZenML

Nebius

Langfuse

LLM HOSTING & DEPLOYMENT

OpenVINO is a open-source toolkit that helps developers optimize and deploy AI models running on intel Chips. It can 
be used to build applications for tasks like computer vision, speech recognition, and natural language processing. 
Developers can leverage models from PyTorch, TensorFlow, TensorFlow Lite, PaddlePaddle, and ONNX directly.

AI OBSERVABILITY & MONITORING

Published by Marktechpost AI Media, Inc 09

Open Source AI



NannyML is an open-source python library that allows you to estimate post-deployment model performance (without 
access to targets), detect data drift, and intelligently link data drift alerts back to changes in model performance

TruEra "TruLens," is open source software, that allows developers to evaluate and track the quality of their Large 
Language Models (LLMs) using a set of defined metrics and feedback functions. 

Synthea is an open-source synthetic patient generator aimed at healthcare research and simulation. It enables the 
creation of vast and diverse virtual patient populations with intricate medical histories, demographics, and clinical data.

CTGAN is a collection of Deep Learning based synthetic data generators for single table data, which are able to learn 
from real data and generate synthetic data with high fidelity.

Synner/Human Data Interaction Lab is a tool that helps users generate real-looking synthetic data by visually and 
declaratively specifying the properties of the dataset such as each field’s statistical distribution, its domain, and its 
relationship to other fields

LangChain is a composable framework to build with LLMs. LangGraph is the orchestration framework for controllable 
agentic workflows. Run.

LangSmith

NannyML

Truera

Synthea

CTGAN

Human Data

Human Data

LangSmith is a platform for building, testing, and monitoring large language model (LLM) applications. It's designed to 
help developers ship applications quickly and reliably. 

SYNTHETIC TRAINING DATA

AI AGENT FRAMEWORKS
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Gain control with LangGraph to design agents that reliably handle complex tasks. Build and scale agentic applications 
with LangGraph Platform.

CrewAI is a framework that uses AI to organize multiple agents to work together to complete tasks. It's an open-source, 
Python-based framework that can be used for a variety of industries and applications. 

AutoGen is an open-source programming framework for building AI agents and facilitating cooperation among multiple 
agents to solve tasks. AutoGen aims to provide an easy-to-use and flexible framework for accelerating development 
and research on agentic AI.

SuperAGI is an open-source framework that allows developers to create, manage, and run autonomous AI agents. It 
combines AI agents with human workflows to automate tasks and improve efficiency

LLMWare focuses their  open source research efforts on the new "ware" ("middleware" and "software" that will wrap and 
integrate LLMs), as well as building high-quality, automation-focused enterprise models available in Hugging Face.

LlamaIndex is an open-source framework that lets users combine custom data sources with large language models 
(LLMs). It's used to build applications like chatbots, document extraction, and AI assistants. 

Haystack is an open source framework for building production-ready LLM applications, retrieval-augmented generative 
pipelines and state-of-the-art search systems that work intelligently over large document collections.

Linkedin provides an open source library Liger-Kernel to  improve performance and resource optimization when train-
ing models. The library can improve training throughput by 20% and reduce memory usage by 60% with just a single 
line of code for popular models like Llama, Gemma, and Qwen.

LangGraph

CrewAI

AutoGen

SuperAGI

LLMWare

LLamalndex

Haystack

LinkedIn

BUILD & TRAIN MODELS
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With unsloth AI finetune Llama 3.3, Mistral, Phi-4, Qwen 2.5 , Gemma & DeepSeek-R1 2x faster with 80% less memory. 
Open source solution!

Arthur AI itself is not entirely open source, their primary open-source offering is called "Arthur Bench," which is a tool 
designed to evaluate and compare different Large Language Models (LLMs) allowing users to freely access and con-
tribute to its code. 

Probabl is the official operator of the scikit-learn brand, and its main contributor. Probabl's core mission is to develop 
and maintain commons for data science, from scikit-learn to a complete suite of tools and solutions for machine learn-
ing and artificial intelligence.

Credo AI's open-source component is called "Credo AI Lens," which is a Python package that acts as a comprehensive 
framework for assessing AI systems, focusing on aspects like fairness, performance, explainability, and data profiling, 
allowing developers to evaluate the responsible development and deployment of AI models

Protect AI has released several key tools within their platform as open source, including "NB Defense", "ModelScan", and 
"Rebuff", which are available on GitHub and designed to detect vulnerabilities in machine learning systems; additionally, 
their "LLM Guard" tool is also open source and specifically focuses on securing LLMs.

Giskard is an open-source Python library that automatically detects performance, bias & security issues in AI applica-
tions. The library covers LLM-based applications such as RAG agents, all the way to traditional ML models for tabular 
data.

Unsloth

Arthur

Vectara

Probabl

Vectara offers their popular open-source HHEM hallucination evaluation model.
The HHEM model series are designed for detecting hallucinations in LLMs. They are particularly useful in the context of 
building retrieval-augmented-generation (RAG) applications where a set of facts is summarized by an LLM, and HHEM 
can be used to measure the extent to which this summary is factually consistent with the facts.

Credo AI

Protect AI

Giskard

SECURITY, PRIVACY & GOVERNANCE
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Chroma is an AI-native open-source vector database used to simplify the development of LLM (Large Language Model) 
applications. It supports building these applications by making knowledge, facts, and skills easily pluggable for LLMs

Milvus is an open-source vector database for embedding similarity search and AI applications. It aims to make 
unstructured data search more accessible and provides a consistent user experience across different deployment 
environments, including laptops, local clusters, and the cloud

Qdrant is a vector similarity search engine and vector database offering a production-ready service with an 
easy-to-use API for storing, searching, and managing vectors along with additional payload data. It provides extended 
filtering support, making it suitable for neural-network or semantic-based matching, faceted search, and other appli-
cations.

Weaviate is a cloud-native, open-source vector database that emphasizes speed and scalability. Using machine learn-
ing models, it transforms various types of data—text, images, and more—into a highly searchable vector database.

PostgreSQL is an open-source relational database that supports vector data through extensions like pgvector. 
This extension enables efficient similarity search on vector data, integrating with PostgreSQL’s ecosystem.

Cassandra is a scalable NoSQL database for handling large amounts of data across many commodity servers, providing 
high availability with no single point of failure. With the introduction of vector search capabilities, Cassandra can 
efficiently manage vector data.

Redis is an in-memory data structure store known for its speed and flexibility. With the addition of the RedisAI module, 
it extends its capabilities to support vector data and AI model serving.

Supabase is an open-source platform that helps developers build web and mobile applications. It includes a Postgres 
database, authentication, and real-time subscriptions. 

Chroma

Milvus

Qdrant

Weaviate

PostgreSQL

Cassandra

Cassandra

Supabase

Zilliz

VECTOR DATABASES

Zilliz vector database management system - fully managed Milvus - supports billion-scale vector search and is trusted 
by over 10000 enterprise users
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OPEN SOURCE AI 

FOR PRODUCTION  

Why

 01  Cost Efficiency
Open-source AI eliminates or 
significantly reduces expenses 
related to licensing fees

 02  Ease of 
Implementation

Security, Risk, 
and Control

With robust community 
support, open-source AI tools 
are typically easier to integrate 
and deploy within existing 
systems.

 03  

Using open-source AI allows 
organizations greater oversight 
and control over their systems. 
They can inspect, modify, and 
enhance the code as needed, 
which not only improves secu-
rity but also ensures compli-
ance with evolving regulatory 
requirements.

 04  Resource 
Availability
The support ecosystem for 
open-source AI is extensive, 
encompassing community 
forums, developer groups, and 
third-party providers offering 
professional services. This wide 
range of resources aids in 
effective troubleshooting and 
continuous innovation.

 05  Less Bias and More
Transparency

More 
Customizability

The transparent nature of 
open-source software allows a 
diverse community of develop-
ers and users to scrutinize and 
refine the algorithms, greatly 
reducing biases and enhancing 
fairness in AI applications.

 06  

The inherent flexibility of 
open-source AI enables com-
panies to tailor solutions to 
precisely fit their specific needs. 
Businesses can directly modify 
the source code to adapt the 
technology for unique opera-
tional workflows or to achieve 
enhanced performance met-
rics.
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 ROBERT NISHIHARA 
A Face-to-Face with 

CEO 

Direct Dialogue:
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The Genesis of Ray: Robert, can you share the story behind Ray’s inception and what 
inspired you to tackle the challenges of distributed computing in the AI space?

Overcoming Technical Hurdles: As Ray evolved into a robust framework, what were 
some of the most significant technical challenges you encountered, and how did 
your team overcome them?

Integration with Deep Learning Frameworks: How does Ray integrate with popular 
deep learning tools like TensorFlow and PyTorch, and what benefits does this bring 
to researchers and practitioners aiming to push AI boundaries?

Open Source Impact: In the evolving landscape of open source AI, what role do you 
see Ray playing in democratizing access to scalable, production-ready machine 
learning solutions?

Robert Nishihara is one of the creators of Ray, the world’s leading open source 
AI compute engine. Ray is used by companies across the board from Canva to 

Runway to Coinbase to Pinterest to scale their machine learning training, 
inference, and data processing workloads. He is one of the co-founders of 

Anyscale, which is the company behind Ray. He did his PhD in machine learning and 
distributed systems in the computer science department at UC Berkeley. Before 

that, he majored in math at Harvard.

I started the PhD program at UC Berkeley in 2013 
focused on machine learning algorithms. We were 
working on algorithms for reinforcement learning, opti-
mization algorithms, deep learning, and so on. But as 
time went on, despite wanting to focus on algorithms, 
my collaborators and I found ourselves spending all of 

our time managing clusters and building ad hoc distrib-
uted systems to scale our experiments. We realized 
that AI is incredibly computationally intensive, and 
there was an opportunity to build useful open source 
tools for scaling these compute intensive workloads. 
That led us to create Ray.

In addition to the sheer scale of data and compute 
involved, a major one is that AI workloads use heteroge-
neous compute. We now live in a GPU-centric and 
accelerator-centric world, so Ray was designed with 
GPU compute in mind from day one. As AI compute 
workloads grow in complexity, AI workloads are dealing 

with increasingly heterogeneous hardware. For example, 
many multimodal data processing pipelines mix CPU 
and GPU compute. CPUs for regular processing, GPUs 
for inference. Many previous distributed systems from 
the big data world like Spark, Hadoop, and Flink, were 
designed for CPUs. AI has different requirements.

Ray is complementary with deep learning frameworks 
like TensorFlow and PyTorch as well as with LLM infer-
ence engines like vLLM and TensorRT-LLM. While these 
engines focus on model optimizations and squeezing 
the most performance out of a GPU, Ray focuses on the 
challenges of distributed computing and multi-ma-
chine scaling. So in an oversimplified sense, these 
frameworks focus on optimizing the performance of a 
single model. Ray focuses on scaling that model across 

a cluster, as part of a serving application, a training run, 
or a data pipeline.

All of this is also very complimentary with container 
management systems like Kubernetes. So a very 
common tech stack for AI compute will be something 
like Ray + Kubernetes + PyTorch + vLLM.

Ray is already used as the AI compute engine at the 
heart of many tech companies’ ML platforms like Uber, 
Pinterest, ByteDance, Spotify, Canva, Reddit, Instacart, 
Coinbase, and many others.

As more and more businesses bring AI to production, 
our hope is to enable all of these businesses to leverage 
compute resources of all types to develop, scale, and 
deploy AI applications.
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Also, fine-tuning the popular Llama model with stan-
dard methods originally took around 85 hours on a 
single GPU (Introducing Unsloth). Large models often 
won’t even fit into a single GPU’s memory, forcing you to 
use multiple expensive GPUs or reduce batch sizes to 

make training feasible. Unsloth makes it easier, faster, 
and more accurate than ever to train custom AI models 
- completely free, and entirely on your own local hard-
ware.

Before we dive into Unsloth’s framework and past work, 
we need to understand the meaning and use cases 
behind fine-tuning. Fine-tuning an LLM customizes its 
behavior, enhances domain knowledge, and optimizes 
performance for specific tasks. Fine-tuning is the 
process of updating the actual "brains" of the language 
model through some process called back-propagation.
By fine-tuning a pre-trained model (e.g. Llama-3.1-8B) 
on a specialized dataset, you can:

Update Knowledge: Introduce new domain-specific 
information.

Customize Behavior: Adjust the model’s tone, person-
ality, or response style.

Optimize for Tasks: Improve accuracy and relevance 
for specific use cases.

Example usecases:

Train LLM to predict if a headline impacts a company 
positively or negatively.

Use historical customer interactions for more accurate 
and custom responses.

Fine-tune LLM on legal texts for contract analysis, case 
law research, and compliance.

You can think of a fine-tuned model as a specialized 
agent designed to do specific tasks more effectively 
and efficiently. Fine-tuning can replicate all of RAG's 
capabilities, but not vice versa. 

However, fine-tuning open models like Meta’s Llama or 
Google’s Gemma can not only be extremely complicat-
ed, painfully slow and memory-intensive, but also 
buggy. For example, Google’s open model Gemma was 
released to subpar results, however Unsloth managed 
to find and fix 8 critical bugs in the model which greatly 
effected the model’s performance. Their fixes were so 
pivotal that Andrej Kaparthyu (one of OpenAI’s 
co-founder) gave them a shoutout on Twitter (X) and 
their fixes were upstreamed to the official Google and 
Hugging Face implementations.

Future Roadmap: Looking ahead, can you reveal some exciting features or improve-
ments on Ray’s roadmap that you believe will further revolutionize distributed 
computing in AI?

One of the fastest growing workloads is multimodal 
data processing. More and more data processing is 
being done with AI. Businesses are using AI to get 
insights and value from their data. This is fundamentally 
an inference workload. What this means is that more 
and more data processing will become an AI workload 
running on GPUs. With Ray, we’re investing heavily in 

supporting these data intensive and accelerator inten-
sive workloads.

Our focus with Ray is the same as ever, that is, providing 
a simple and performant API for scaling compute inten-
sive workloads.
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In Focus:

Also, fine-tuning the popular Llama model with stan-
dard methods originally took around 85 hours on a 
single GPU (Introducing Unsloth). Large models often 
won’t even fit into a single GPU’s memory, forcing you to 
use multiple expensive GPUs or reduce batch sizes to 

make training feasible. Unsloth makes it easier, faster, 
and more accurate than ever to train custom AI models 
- completely free, and entirely on your own local hard-
ware.

Before we dive into Unsloth’s framework and past work, 
we need to understand the meaning and use cases 
behind fine-tuning. Fine-tuning an LLM customizes its 
behavior, enhances domain knowledge, and optimizes 
performance for specific tasks. Fine-tuning is the 
process of updating the actual "brains" of the language 
model through some process called back-propagation.
By fine-tuning a pre-trained model (e.g. Llama-3.1-8B) 
on a specialized dataset, you can:

Update Knowledge: Introduce new domain-specific 
information.

Customize Behavior: Adjust the model’s tone, person-
ality, or response style.

Optimize for Tasks: Improve accuracy and relevance 
for specific use cases.

Example usecases:

Train LLM to predict if a headline impacts a company 
positively or negatively.

Use historical customer interactions for more accurate 
and custom responses.

Fine-tune LLM on legal texts for contract analysis, case 
law research, and compliance.

You can think of a fine-tuned model as a specialized 
agent designed to do specific tasks more effectively 
and efficiently. Fine-tuning can replicate all of RAG's 
capabilities, but not vice versa. 

However, fine-tuning open models like Meta’s Llama or 
Google’s Gemma can not only be extremely complicat-
ed, painfully slow and memory-intensive, but also 
buggy. For example, Google’s open model Gemma was 
released to subpar results, however Unsloth managed 
to find and fix 8 critical bugs in the model which greatly 
effected the model’s performance. Their fixes were so 
pivotal that Andrej Kaparthyu (one of OpenAI’s 
co-founder) gave them a shoutout on Twitter (X) and 
their fixes were upstreamed to the official Google and 
Hugging Face implementations.

Journey 
&

Insights



1. Can you share the initial vision behind Parlant and what specific gaps in 
the AI community you aimed to address with its launch?

The vision for Parlant came from a fundamental realiza-
tion that “correct” AI interaction can’t be solved using a 
generic algorithm. It actually requires continuous inte-
gration of shifting and subjective business needs and 
expectations. We observed that large language models, 
no matter how advanced, make their own choices in 
conversation—unless steered and supervised by clear 
guidelines. Now, because some choices are inevitably 
arbitrary, they often fail to align with a company’s spe-
cific ethos and standards, making real-world adoption 
difficult, and often completely impractical. So we aimed 
to create a framework that allows organizations to 
reliably and dynamically dictate behavioral standards 
for their AI agents, according to their needs.

When we set out to create Parlant, many developers in 
the GenAI community could build a sophisticated chat-
bot, but there was no clear way to ensure the bot 
speaks and behaves in alignment with evolving busi-
ness needs across the board. Parlant set out to fill that 
void. We wanted to support teams in delivering 
customer-facing agents that faithfully represented 
their brand and policies. To this day Parlant is unique in 
its approach to this challenge.

In building it, we had to focus on features that most LLM 
tooling overlooked: robust alignment controls and easy, 
real-time behavior updates. We knew from talking to 
people at large companies that once an AI agent was 
deployed, business experts inevitably wanted to tweak 
how it interacts with users or handles sensitive ques-
tions – tasks that might require days of fragile prompt 
tuning or even model retraining, depending on the 
approach. With Parlant, our vision was that such chang-
es should be immediate and reliable, like updating a 
company policy document. We introduced the concept 
of “guided AI”, where small, atomically-defined rules 
and the context in which they apply all act as a con-
stantly updatable playbook for the AI’s behavior.

Another gap we targeted was the lack of transparency 
and consistency in AI agent behavior. Parlant’s design 
enforces consistency by double-checking every 
response against the defined guidelines. We call this 
process supervision. This was a deliberate response to 
the AI community’s struggle with unpredictable LLM 
outputs. We wanted an AI agent that teams could trust, 
not just because it’s smart but also that it’s obedient to 
the rules you’ve set.

An experienced software builder with extensive experience in mission-critical 
software and system architecture, Yam understands what it takes to create 
reliable, production-ready software. This background informs his distinctive 

approach to the development of predictable and aligned AI systems.

YAM
MARCOVITZ

Also, fine-tuning the popular Llama model with stan-
dard methods originally took around 85 hours on a 
single GPU (Introducing Unsloth). Large models often 
won’t even fit into a single GPU’s memory, forcing you to 
use multiple expensive GPUs or reduce batch sizes to 

make training feasible. Unsloth makes it easier, faster, 
and more accurate than ever to train custom AI models 
- completely free, and entirely on your own local hard-
ware.

Before we dive into Unsloth’s framework and past work, 
we need to understand the meaning and use cases 
behind fine-tuning. Fine-tuning an LLM customizes its 
behavior, enhances domain knowledge, and optimizes 
performance for specific tasks. Fine-tuning is the 
process of updating the actual "brains" of the language 
model through some process called back-propagation.
By fine-tuning a pre-trained model (e.g. Llama-3.1-8B) 
on a specialized dataset, you can:

Update Knowledge: Introduce new domain-specific 
information.

Customize Behavior: Adjust the model’s tone, person-
ality, or response style.

Optimize for Tasks: Improve accuracy and relevance 
for specific use cases.

Example usecases:

Train LLM to predict if a headline impacts a company 
positively or negatively.

Use historical customer interactions for more accurate 
and custom responses.

Fine-tune LLM on legal texts for contract analysis, case 
law research, and compliance.

You can think of a fine-tuned model as a specialized 
agent designed to do specific tasks more effectively 
and efficiently. Fine-tuning can replicate all of RAG's 
capabilities, but not vice versa. 

However, fine-tuning open models like Meta’s Llama or 
Google’s Gemma can not only be extremely complicat-
ed, painfully slow and memory-intensive, but also 
buggy. For example, Google’s open model Gemma was 
released to subpar results, however Unsloth managed 
to find and fix 8 critical bugs in the model which greatly 
effected the model’s performance. Their fixes were so 
pivotal that Andrej Kaparthyu (one of OpenAI’s 
co-founder) gave them a shoutout on Twitter (X) and 
their fixes were upstreamed to the official Google and 
Hugging Face implementations.
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2. How does Parlant differentiate itself from other open-source AI projects in 
terms of its approach and value proposition?

Parlant actually occupies a unique niche focused on 
conversational AI governance. If we imagine the spec-
trum of AI projects, on one end we have orchestration 
frameworks like LangChain or multi-agent systems 
(CrewAI, AutoGen, etc.) that coordinate various AI tasks, 
and on the other end we have low-level libraries like 
OpenAI’s function calling or guardrail systems that 
tackle a specific piece of the puzzle. Parlant sits some-
what in between – it’s a full-fledged framework specifi-
cally made for building a single AI representative that 
needs strict behavior controls. When you actually focus 
on this so-called niche problem and try to solve it thor-

oughly, it turns out it’s a huge problem, and people 
(especially large brands) really need it.

In a nutshell, Parlant is the framework you choose when 
consistency and compliance are more important than 
raw cleverness. For example, in enterprise AI use cases, 
if someone needs a GenAI chatbot that absolutely must 
follow company policy, Parlant stands out in a sea of 
more loosely guided systems. It might not have the 
name recognition of some larger projects yet, but tech-
nically speaking, it fills a gap. It’s the specialized solution 
for safe, predictable AI interactions.

3. In what ways do you see Parlant as an influential project within the 
broader open-source AI ecosystem?

4. How has the open-source community contributed to Parlant’s evolution, 
and can you highlight some pivotal enhancements driven by community 
input?

By launching Parlant as a fully open project, we wanted 
to rally the community around this approach, fostering 
shared best practices for reliable AI agents. Ultimately, 
the initial vision was to move the community from 
ad-hoc prompt engineering to a disciplined, transpar-
ent way of controlling conversational AI – treating AI 
behavior as a first-class, versionable artifact, much like 
code.

Even as a relatively new project, Parlant signals a shift in 
the open-source GenAI scene by pushing toward 
behavior-first AI development. Historically, most AI 
projects have emphasized model-centric improve-
ments (bigger models, more data) or pipeline innova-
tions. Parlant flips the script to ask: How do we opera-
tionalize AI behavior in real-world apps? By doing so in 
the open, we’re trying to encourage the community to 
think beyond accuracy metrics and focus on alignment 
and reliability.

One way Parlant is influential is by demonstrating that 
strict control and flexibility can coexist in an 
LLM-based AI agent. We’ve shown it’s possible to 
harness powerful LLMs but keep them on a short leash 
in terms of following business rules. This sets a bit of a 
blueprint for others. For example, developers who might 

have used only prompt engineering are now consider-
ing declarative policy layers like Parlant’s guidelines in 
their own projects. We’ve seen discussions in the com-
munity referencing Parlant’s approach to dynamic 
guidelines as a novel solution to the “rogue AI” problem 
in chatbots. On Reddit, for example, we saw someone 
noted how Parlant provides a “unique value prop in the 
world of agent platforms”, highlighting that virtually no 
other framework seems to be offering such 
out-of-the-box reliability controls.

Finally, the open-source AI community is increasingly 
fatigued from half-baked solutions, and looks for refer-
ence implementations of working design patterns. 
Parlant is an effective reference for safe and controlled 
AI deployment. Its contributions around deep input 
evaluation, output validation, and version-controlled AI 
policies could inform standards or inspire extensions in 
other projects. In the coming years, as concerns around 
AI safety and alignment grow, we anticipate that the 
approach we’ve taken with Parlant will influence indus-
try guidelines for AI agent design. By demonstrating 
that alignment can be engineered systematically (and 
not just via training data), I think we’re adding an 
important voice to the conversation.

The community involvement so far has been nothing 
short of amazing. It’s done more than just adopting 
Parlant – they’ve actively helped shape critical archi-
tectural flows and components and are still doing so. 
One of the big advantages of developing a framework 
like Parlant out in the open, is that our mission of inte-

grating robustness into the flexible world of LLMs 
attracts heavy-hitters: senior engineers at large enter-
prises who’ve previously developed and deployed 
NLU-based chatbots to millions of users, accumulating 
extremely rare and valuable real-world experience in 
the process. Many of those experienced engineers are 

now tasked with finding a way to combine the power of 
LLMs with the strict alignment requirements of their 
companies. So we can all convene around a single table 
and join forces, contributing cutting-edge ideas and 
innovations into an open-source engine that’s powerful 
enough to cater to such large-scale use cases. It’s a 
clearly important and challenging task, so it attracts 
powerful intellects.

From day one, we knew we wanted to invite developers 
to join our efforts in refining the framework, and they’ve 
responded by providing both feedback and code. 
Community feedback influenced both external integra-
tions as well as core engine enhancements. For 
instance, a popular community-driven add-on is the 
Parlant Q&A service, which allows a Parlant agent to 
answer FAQs from a managed Q&A knowledge base 
with a high degree of accuracy, seamlessly integrating 
frequently asked questions into the agent’s repertoire. 
On the other end of the spectrum, users on Discord and 

GitHub reported edge cases where their agent needed 
more nuanced control in certain contexts. Directly 
learning about the different challenges people are 
facing in large-scale customer-facing use cases helps 
us focus and leverage our team's deep R&D background 
to find uniquely tailored solutions.

It turns out that when you really understand a problem 
right at its source, along with its real-world context, it 
makes all the difference. This is exactly what communi-
ty involvement gives you: instead of trying to solve 
grandiose theoretical problems in a vacuum, you can 
focus on immediate, practical enablement. It’s like the 
whole world can be your design partner. It sounds 
simple, but I think that’s what allows for real disruption: 
penetrating through the hype and noise and clearly 
seeing the challenges people are facing. In this way, a 
properly managed community project leads to more 
practical systems with broader applications.

Also, fine-tuning the popular Llama model with stan-
dard methods originally took around 85 hours on a 
single GPU (Introducing Unsloth). Large models often 
won’t even fit into a single GPU’s memory, forcing you to 
use multiple expensive GPUs or reduce batch sizes to 

make training feasible. Unsloth makes it easier, faster, 
and more accurate than ever to train custom AI models 
- completely free, and entirely on your own local hard-
ware.

Before we dive into Unsloth’s framework and past work, 
we need to understand the meaning and use cases 
behind fine-tuning. Fine-tuning an LLM customizes its 
behavior, enhances domain knowledge, and optimizes 
performance for specific tasks. Fine-tuning is the 
process of updating the actual "brains" of the language 
model through some process called back-propagation.
By fine-tuning a pre-trained model (e.g. Llama-3.1-8B) 
on a specialized dataset, you can:

Update Knowledge: Introduce new domain-specific 
information.

Customize Behavior: Adjust the model’s tone, person-
ality, or response style.

Optimize for Tasks: Improve accuracy and relevance 
for specific use cases.

Example usecases:

Train LLM to predict if a headline impacts a company 
positively or negatively.

Use historical customer interactions for more accurate 
and custom responses.

Fine-tune LLM on legal texts for contract analysis, case 
law research, and compliance.

You can think of a fine-tuned model as a specialized 
agent designed to do specific tasks more effectively 
and efficiently. Fine-tuning can replicate all of RAG's 
capabilities, but not vice versa. 

However, fine-tuning open models like Meta’s Llama or 
Google’s Gemma can not only be extremely complicat-
ed, painfully slow and memory-intensive, but also 
buggy. For example, Google’s open model Gemma was 
released to subpar results, however Unsloth managed 
to find and fix 8 critical bugs in the model which greatly 
effected the model’s performance. Their fixes were so 
pivotal that Andrej Kaparthyu (one of OpenAI’s 
co-founder) gave them a shoutout on Twitter (X) and 
their fixes were upstreamed to the official Google and 
Hugging Face implementations.
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5. Can you discuss Parlant's current position within the AI landscape, espe-
cially in relation to similar projects and solutions?

6. How do you plan to balance innovation with stability in Parlant as the 
project scales and more contributors get involved?The community involvement so far has been nothing 

short of amazing. It’s done more than just adopting 
Parlant – they’ve actively helped shape critical archi-
tectural flows and components and are still doing so. 
One of the big advantages of developing a framework 
like Parlant out in the open, is that our mission of inte-

grating robustness into the flexible world of LLMs 
attracts heavy-hitters: senior engineers at large enter-
prises who’ve previously developed and deployed 
NLU-based chatbots to millions of users, accumulating 
extremely rare and valuable real-world experience in 
the process. Many of those experienced engineers are 

now tasked with finding a way to combine the power of 
LLMs with the strict alignment requirements of their 
companies. So we can all convene around a single table 
and join forces, contributing cutting-edge ideas and 
innovations into an open-source engine that’s powerful 
enough to cater to such large-scale use cases. It’s a 
clearly important and challenging task, so it attracts 
powerful intellects.

From day one, we knew we wanted to invite developers 
to join our efforts in refining the framework, and they’ve 
responded by providing both feedback and code. 
Community feedback influenced both external integra-
tions as well as core engine enhancements. For 
instance, a popular community-driven add-on is the 
Parlant Q&A service, which allows a Parlant agent to 
answer FAQs from a managed Q&A knowledge base 
with a high degree of accuracy, seamlessly integrating 
frequently asked questions into the agent’s repertoire. 
On the other end of the spectrum, users on Discord and 

GitHub reported edge cases where their agent needed 
more nuanced control in certain contexts. Directly 
learning about the different challenges people are 
facing in large-scale customer-facing use cases helps 
us focus and leverage our team's deep R&D background 
to find uniquely tailored solutions.

It turns out that when you really understand a problem 
right at its source, along with its real-world context, it 
makes all the difference. This is exactly what communi-
ty involvement gives you: instead of trying to solve 
grandiose theoretical problems in a vacuum, you can 
focus on immediate, practical enablement. It’s like the 
whole world can be your design partner. It sounds 
simple, but I think that’s what allows for real disruption: 
penetrating through the hype and noise and clearly 
seeing the challenges people are facing. In this way, a 
properly managed community project leads to more 
practical systems with broader applications.

Compared to multi-agent frameworks (e.g. AutoGen, 
Camel), Parlant is not about having AIs talk to each 
other or splitting tasks among bots. Instead, it’s about 
one agent being the best-behaved, most reliable “em-
ployee” you could deploy to interact with humans. This 
means that in scenarios where those frameworks might 
be overkill or under-controlled, Parlant is the go-to. It 
trades off the multi-agent breadth for depth in 
single-agent performance.

Relative to LangChain or LlamaIndex, Parlant can actu-
ally be complementary. Those frameworks don’t deeply 
address how the AI responds to the user. Parlant steps 
in at that stage: after you’ve retrieved knowledge or 
decided on an answer using (possibly) any of those 
frameworks, Parlant helps you ensure the answer is 
delivered correctly, in the right tone, at the right time, 
following all of your guidelines and policies.

In that regard, Parlant is more like the last-mile gover-
nance layer in a customer-facing solution. If you look at 
it that way, Parlant is relatively unique; few open-source 
projects provide this conversation policy enforcement 
as their primary function. Projects like Nvidia’s NeMo 
Guardrails or Microsoft’s Guidance are probably the 
closest analog, as they also aim to enforce rules on LLM 

outputs. But, while conceptually they share similarities 
with Parlant, these projects are quite low-level, limited, 
and passive or “avoiding” in their approach. In contrast, 
Parlant offers a richer and more flexible behavioral 
framework to work around (and with) conversational 
edge cases using active behavioral guidance. So 
instead of just saying, “Here’s the only input I’m willing to 
accept, otherwise I error out,” you can say, “Here’s 
exactly how I want to approach it when someone brings 
up this or that topic.”

Compared to most frameworks, Parlant’s is more like a 
specialist in an ecosystem of generalists. Instead of 
trying to cater to everything and everyone; it does one 
thing, and it does it well. My wife (a proper foodie) 
taught me, “If you go to a restaurant that offers both 
Sushi and Pizza, you’re not going to get high-quality 
Sushi or Pizza. Decide what you want to eat, and let’s go 
to a place that specializes in that one thing.” So in the 
same vein, Parlant leaves data retrieval and platform 
integrations to others. It doesn’t manage teams of 
agents. But it does ensure that the interaction between 
a particular AI agent and a human meets high standards 
of correctness and alignment. Projects that need that 
outcome need something like Parlant, highlighting its 
specific spot in the AI toolkit universe.

A strong core architecture encourages experimentation 
on the periphery while protecting the project’s stable 
core. As to this core, we require that all substantial code 
contributions pass our regression test suite and come 
with their own corresponding tests. This guarantees 
that new features don’t break existing functionality. We 
actually include stochastic tests with expected behav-
ior ranges (given the inherent randomness of LLMs) to 
catch if a change makes the agent start deviating from 
guidelines unpredictably.

We also employ a modular design to contain innovation. 
Parlant’s engine has clearly defined components that 
work in unison – guideline matching, tool invocation, 
response generation, etc. We encourage contributors 
to follow suit and design their improvements in a mod-
ular way. For instance, if someone has an idea for a new 
way to score guideline relevance using an ML model, we 
suggest implementing it as a module rather than over-

hauling the core logic. That way, the main stable branch 
of Parlant remains reliable, and new ideas can be tried in 
parallel. Once an experimental feature proves its worth 
over time, we can integrate it carefully into the core.

New contributors are encouraged to discuss changes in 
an issue or our Discord first. In having that dialogue, we 
try to ensure the architecture develops in a 
future-compatible way. As repo maintainers, we priori-
tize stability. No matter how exciting a new capability is, 
it won’t be merged until we’re confident in its impact. 
This might involve thorough code review and perhaps 
beta testing with a subset of the community for a few 
weeks. Only after incorporating sufficient feedback 
does it hit mainline. We plan to maintain this approach 
as the project scales.

Balancing rapid innovation with stability is something 
we’re very mindful of as Parlant’s community grows. 
We’re also trying to learn from where other projects 
didn’t do so well. Fundamentally, we can break our 

strategy down to 3 key components: (1) A strong core 
architecture, protected by regression tests, (2) A mod-
ular design, and (3) Delegating ownership and responsi-
bility to experienced technical stakeholders in our 
community.

Also, fine-tuning the popular Llama model with stan-
dard methods originally took around 85 hours on a 
single GPU (Introducing Unsloth). Large models often 
won’t even fit into a single GPU’s memory, forcing you to 
use multiple expensive GPUs or reduce batch sizes to 

make training feasible. Unsloth makes it easier, faster, 
and more accurate than ever to train custom AI models 
- completely free, and entirely on your own local hard-
ware.

Before we dive into Unsloth’s framework and past work, 
we need to understand the meaning and use cases 
behind fine-tuning. Fine-tuning an LLM customizes its 
behavior, enhances domain knowledge, and optimizes 
performance for specific tasks. Fine-tuning is the 
process of updating the actual "brains" of the language 
model through some process called back-propagation.
By fine-tuning a pre-trained model (e.g. Llama-3.1-8B) 
on a specialized dataset, you can:

Update Knowledge: Introduce new domain-specific 
information.

Customize Behavior: Adjust the model’s tone, person-
ality, or response style.

Optimize for Tasks: Improve accuracy and relevance 
for specific use cases.

Example usecases:

Train LLM to predict if a headline impacts a company 
positively or negatively.

Use historical customer interactions for more accurate 
and custom responses.

Fine-tune LLM on legal texts for contract analysis, case 
law research, and compliance.

You can think of a fine-tuned model as a specialized 
agent designed to do specific tasks more effectively 
and efficiently. Fine-tuning can replicate all of RAG's 
capabilities, but not vice versa. 

However, fine-tuning open models like Meta’s Llama or 
Google’s Gemma can not only be extremely complicat-
ed, painfully slow and memory-intensive, but also 
buggy. For example, Google’s open model Gemma was 
released to subpar results, however Unsloth managed 
to find and fix 8 critical bugs in the model which greatly 
effected the model’s performance. Their fixes were so 
pivotal that Andrej Kaparthyu (one of OpenAI’s 
co-founder) gave them a shoutout on Twitter (X) and 
their fixes were upstreamed to the official Google and 
Hugging Face implementations.
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7. Could you elaborate on the types of applications and use cases you see 
benefiting most from Parlant’s unique approach?

A strong core architecture encourages experimentation 
on the periphery while protecting the project’s stable 
core. As to this core, we require that all substantial code 
contributions pass our regression test suite and come 
with their own corresponding tests. This guarantees 
that new features don’t break existing functionality. We 
actually include stochastic tests with expected behav-
ior ranges (given the inherent randomness of LLMs) to 
catch if a change makes the agent start deviating from 
guidelines unpredictably.

We also employ a modular design to contain innovation. 
Parlant’s engine has clearly defined components that 
work in unison – guideline matching, tool invocation, 
response generation, etc. We encourage contributors 
to follow suit and design their improvements in a mod-
ular way. For instance, if someone has an idea for a new 
way to score guideline relevance using an ML model, we 
suggest implementing it as a module rather than over-

hauling the core logic. That way, the main stable branch 
of Parlant remains reliable, and new ideas can be tried in 
parallel. Once an experimental feature proves its worth 
over time, we can integrate it carefully into the core.

New contributors are encouraged to discuss changes in 
an issue or our Discord first. In having that dialogue, we 
try to ensure the architecture develops in a 
future-compatible way. As repo maintainers, we priori-
tize stability. No matter how exciting a new capability is, 
it won’t be merged until we’re confident in its impact. 
This might involve thorough code review and perhaps 
beta testing with a subset of the community for a few 
weeks. Only after incorporating sufficient feedback 
does it hit mainline. We plan to maintain this approach 
as the project scales.

Balancing rapid innovation with stability is something 
we’re very mindful of as Parlant’s community grows. 
We’re also trying to learn from where other projects 
didn’t do so well. Fundamentally, we can break our 

strategy down to 3 key components: (1) A strong core 
architecture, protected by regression tests, (2) A mod-
ular design, and (3) Delegating ownership and responsi-
bility to experienced technical stakeholders in our 
community.

Parlant’s approach is most crucial where precision and 
compliance need to work alongside adaptability and 
high-coverage. One prime category is regulated or 
sensitive industries. For example, in financial services 
(like banking or insurance), there are strict regulations 
on what can be advised or how disclosures are given. 
Parlant shines here because you can encode those 
regulations as guidelines the agent must follow (“Never 
make a guarantee about investment returns” or “Always 
include compliance disclaimer X when initiating certain 
actions”). The framework then ensures the AI respects 
these rules, giving companies confidence that every 
customer interaction is compliant. Similarly, healthcare 
communications benefit from Parlant’s ability to 
implement caution and clarity. You can enforce guide-
lines such as “If the patient mentions chest pain, always 
suggest seeking immediate medical help” or maintain-
ing a reassuring tone for anxious users. In these 
domains, both guardrailing against unauthorized 
answers and knowing how to connect with the custom-
er are important from a business perspective. So the 
ability to reliably follow expert-designed protocols is 
invaluable.

Compliance-focused and brand-sensitive customer 
service agents also greatly benefit. Think of a global 
brand that has a very specific tone of voice and policy 
on how to handle complaints. Parlant allows their AI 
agent to embody the unique approach they’ve devel-
oped in-house. You could have rules like “Always apolo-

gize first if customer is upset” or style guidelines (“Use 
friendly language, call the user by name, and never use 
slang”). Many standard chatbot platforms can’t enforce 
tone at a granular level, but Parlant can. It helps you 
ensure that every support ticket response is on-brand, 
personalized and courteous.

Parlant is also naturally suited for multi-cultural opti-
mization. Because guidelines can include specifics 
about language usage based on which customer the 
agent is talking to, a company can communicate effec-
tively with its customers across multiple locales just by 
switching guideline sets. For instance, politeness norms 
differ by culture, and guidelines can enforce using 
formal titles in one language vs. a casual tone in another, 
all within the same Parlant agent.

Basically, the applications that benefit most from 
Parlant are those where what is said and how it’s said 
matters as much as being correct. Industries like 
finance, healthcare, legal, and high-touch customer 
service — those were front of mind in Parlant’s design. 
Any use case where an AI agent must consistently 
represent specific policies, ethics, or branding is 
where Parlant’s guided approach delivers the most 
value. Conversely, if you just needed a one-off Q&A bot 
with no special constraints, Parlant might be overkill. 
But sustained, policy-bound interaction — that’s where 
it shines best.

Also, fine-tuning the popular Llama model with stan-
dard methods originally took around 85 hours on a 
single GPU (Introducing Unsloth). Large models often 
won’t even fit into a single GPU’s memory, forcing you to 
use multiple expensive GPUs or reduce batch sizes to 

make training feasible. Unsloth makes it easier, faster, 
and more accurate than ever to train custom AI models 
- completely free, and entirely on your own local hard-
ware.

Before we dive into Unsloth’s framework and past work, 
we need to understand the meaning and use cases 
behind fine-tuning. Fine-tuning an LLM customizes its 
behavior, enhances domain knowledge, and optimizes 
performance for specific tasks. Fine-tuning is the 
process of updating the actual "brains" of the language 
model through some process called back-propagation.
By fine-tuning a pre-trained model (e.g. Llama-3.1-8B) 
on a specialized dataset, you can:

Update Knowledge: Introduce new domain-specific 
information.

Customize Behavior: Adjust the model’s tone, person-
ality, or response style.

Optimize for Tasks: Improve accuracy and relevance 
for specific use cases.

Example usecases:

Train LLM to predict if a headline impacts a company 
positively or negatively.

Use historical customer interactions for more accurate 
and custom responses.

Fine-tune LLM on legal texts for contract analysis, case 
law research, and compliance.

You can think of a fine-tuned model as a specialized 
agent designed to do specific tasks more effectively 
and efficiently. Fine-tuning can replicate all of RAG's 
capabilities, but not vice versa. 

However, fine-tuning open models like Meta’s Llama or 
Google’s Gemma can not only be extremely complicat-
ed, painfully slow and memory-intensive, but also 
buggy. For example, Google’s open model Gemma was 
released to subpar results, however Unsloth managed 
to find and fix 8 critical bugs in the model which greatly 
effected the model’s performance. Their fixes were so 
pivotal that Andrej Kaparthyu (one of OpenAI’s 
co-founder) gave them a shoutout on Twitter (X) and 
their fixes were upstreamed to the official Google and 
Hugging Face implementations.
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Also, fine-tuning the popular Llama model with stan-
dard methods originally took around 85 hours on a 
single GPU (Introducing Unsloth). Large models often 
won’t even fit into a single GPU’s memory, forcing you to 
use multiple expensive GPUs or reduce batch sizes to 

make training feasible. Unsloth makes it easier, faster, 
and more accurate than ever to train custom AI models 
- completely free, and entirely on your own local hard-
ware.

Before we dive into Unsloth’s framework and past work, 
we need to understand the meaning and use cases 
behind fine-tuning. Fine-tuning an LLM customizes its 
behavior, enhances domain knowledge, and optimizes 
performance for specific tasks. Fine-tuning is the 
process of updating the actual "brains" of the language 
model through some process called back-propagation.
By fine-tuning a pre-trained model (e.g. Llama-3.1-8B) 
on a specialized dataset, you can:

Update Knowledge: Introduce new domain-specific 
information.

Customize Behavior: Adjust the model’s tone, person-
ality, or response style.

Optimize for Tasks: Improve accuracy and relevance 
for specific use cases.

Example usecases:

Train LLM to predict if a headline impacts a company 
positively or negatively.

Use historical customer interactions for more accurate 
and custom responses.

Fine-tune LLM on legal texts for contract analysis, case 
law research, and compliance.

You can think of a fine-tuned model as a specialized 
agent designed to do specific tasks more effectively 
and efficiently. Fine-tuning can replicate all of RAG's 
capabilities, but not vice versa. 

However, fine-tuning open models like Meta’s Llama or 
Google’s Gemma can not only be extremely complicat-
ed, painfully slow and memory-intensive, but also 
buggy. For example, Google’s open model Gemma was 
released to subpar results, however Unsloth managed 
to find and fix 8 critical bugs in the model which greatly 
effected the model’s performance. Their fixes were so 
pivotal that Andrej Kaparthyu (one of OpenAI’s 
co-founder) gave them a shoutout on Twitter (X) and 
their fixes were upstreamed to the official Google and 
Hugging Face implementations.



Fine-tuning large language models (LLMs) often feels 
intimidating and painfully slow - complex setups, mem-
ory-intensive requirements, and frustratingly buggy 
implementations have kept us waiting days for mean-
ingful results. But Unsloth AI, founded by Australian 
brothers Daniel and Michael Han, is revolutionizing the 
AI landscape, making fine-tuning not only dramatically 
faster and simpler but also reliable. Trusted and used by 
industry leaders like Google, Microsoft, Hugging Face, 
NVIDIA, and Meta, Unsloth also quickly identifies and 
fixes critical bugs in major open models (such as Goo-
gle's Gemma and Microsoft's Phi-4), with contributions 
praised by top AI researchers like OpenAI co-founder 
Andrej Karpathy. With over 8 million monthly downloads 
and a vibrant, welcoming community of developers, 
Unsloth empowers everyone - from enterprise teams 
running multi-GPU clusters to enthusiasts fine-tuning 
models right from their personal laptops.

You can get started with fine-tuning locally with Unsloth 
by just having 3GB VRAM, or you can train for free using 
their Google Colab and Kaggle notebooks which provide 
free GPUs. Alternatively, their open-source UI allows 
you to fine-tune models without writing a single line of 
code. With Unsloth, you spend less time waiting and 
more time creating - because training your own LLM 
should be easy, reliable, and fun. 

And with DeepSeek’s recently released R1 reasoning 
model, Unsloth has already implemented Group Rela-
tive Policy Optimization (GRPO), the algorithm that was 
used to train R1. This allows users to effortlessly turn any 
open LLM like Llama or Mistral into powerful reasoning 
LLMs. Their optimized GRPO implementation dramati-
cally reduces VRAM usage, by as much as 90% - letting 
users reproduce sophisticated reasoning capabilities 
even on a device with just 5GB VRAM.

Also, fine-tuning the popular Llama model with stan-
dard methods originally took around 85 hours on a 
single GPU (Introducing Unsloth). Large models often 
won’t even fit into a single GPU’s memory, forcing you to 
use multiple expensive GPUs or reduce batch sizes to 

make training feasible. Unsloth makes it easier, faster, 
and more accurate than ever to train custom AI models 
- completely free, and entirely on your own local hard-
ware.

Before we dive into Unsloth’s framework and past work, 
we need to understand the meaning and use cases 
behind fine-tuning. Fine-tuning an LLM customizes its 
behavior, enhances domain knowledge, and optimizes 
performance for specific tasks. Fine-tuning is the 
process of updating the actual "brains" of the language 
model through some process called back-propagation.
By fine-tuning a pre-trained model (e.g. Llama-3.1-8B) 
on a specialized dataset, you can:

Update Knowledge: Introduce new domain-specific 
information.

Customize Behavior: Adjust the model’s tone, person-
ality, or response style.

Optimize for Tasks: Improve accuracy and relevance 
for specific use cases.

Example usecases:

Train LLM to predict if a headline impacts a company 
positively or negatively.

Use historical customer interactions for more accurate 
and custom responses.

Fine-tune LLM on legal texts for contract analysis, case 
law research, and compliance.

You can think of a fine-tuned model as a specialized 
agent designed to do specific tasks more effectively 
and efficiently. Fine-tuning can replicate all of RAG's 
capabilities, but not vice versa. 

However, fine-tuning open models like Meta’s Llama or 
Google’s Gemma can not only be extremely complicat-
ed, painfully slow and memory-intensive, but also 
buggy. For example, Google’s open model Gemma was 
released to subpar results, however Unsloth managed 
to find and fix 8 critical bugs in the model which greatly 
effected the model’s performance. Their fixes were so 
pivotal that Andrej Kaparthyu (one of OpenAI’s 
co-founder) gave them a shoutout on Twitter (X) and 
their fixes were upstreamed to the official Google and 
Hugging Face implementations.

unsloth AI 
How a Two-Person Team Is Revolutionizing LLM Training 
with GPU Kernel Magic and Open-Source Innovation

What is Fine-tuning?
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Also, fine-tuning the popular Llama model with stan-
dard methods originally took around 85 hours on a 
single GPU (Introducing Unsloth). Large models often 
won’t even fit into a single GPU’s memory, forcing you to 
use multiple expensive GPUs or reduce batch sizes to 

make training feasible. Unsloth makes it easier, faster, 
and more accurate than ever to train custom AI models 
- completely free, and entirely on your own local hard-
ware.

Unsloth, which is fully open-source on GitHub, was born 
to eliminate training obstacles with a series of ground-
breaking optimizations. It can speed up LLM training by 
up to 2× compared to all other fine-tuning implementa-
tions including those using Flash Attention 2 (FA2). 
(Unsloth AI - Open Source Fine-Tuning for LLMs). These 
claims were verified by Pytorch and Hugging Face 
themselves with the latter even conducting bench-
marks showcasing Unsloth’s performance compared to 
other implementations.

This is done without accuracy degradation but rather 
through low-level kernels and math algorithms. In an 
Alpaca example, Unsloth’s enterprise version slashed 
the fine-tuning time from 85 hours down to just about 
3 hours – a night-and-day difference in productivity 
(Introducing Unsloth). What’s more, Unsloth drastically 
reduces memory usage, in some cases cutting VRAM 
requirements by as much as 60–90% (depending on 
model) (Unsloth AI - Open Source Fine-Tuning for 

LLMs). This means you can fine-tune larger models or 
use bigger batch sizes on the same hardware (Introduc-
ing Unsloth). And all these speed and memory gains 
come with no special hardware needed – Unsloth’s 
optimizations are pure software, so you can turn your 
existing GPU (even an older or smaller one) into a 
fine-tuning powerhouse. Fine-tuning that used to take 
days or top-tier GPUs can now be done in mere hours 
on a single device, without sacrificing model perfor-
mance.

On multiGPUs, Unsloth is 2x faster and uses 40% less 
VRAM usage per GPU compared to Hugging Face + FA2. 
On an 8 GPU setup, you can expect your training speed 
to be 16x faster than before! Previously if a model like 
Llama 3.3 (70B) did not fit on a single GPU, you can now 
make it fit using 2x GPUs and training will be 4x faster!

Before we dive into Unsloth’s framework and past work, 
we need to understand the meaning and use cases 
behind fine-tuning. Fine-tuning an LLM customizes its 
behavior, enhances domain knowledge, and optimizes 
performance for specific tasks. Fine-tuning is the 
process of updating the actual "brains" of the language 
model through some process called back-propagation.
By fine-tuning a pre-trained model (e.g. Llama-3.1-8B) 
on a specialized dataset, you can:

Update Knowledge: Introduce new domain-specific 
information.

Customize Behavior: Adjust the model’s tone, person-
ality, or response style.

Optimize for Tasks: Improve accuracy and relevance 
for specific use cases.

Example usecases:

Train LLM to predict if a headline impacts a company 
positively or negatively.

Use historical customer interactions for more accurate 
and custom responses.

Fine-tune LLM on legal texts for contract analysis, case 
law research, and compliance.

You can think of a fine-tuned model as a specialized 
agent designed to do specific tasks more effectively 
and efficiently. Fine-tuning can replicate all of RAG's 
capabilities, but not vice versa. 

However, fine-tuning open models like Meta’s Llama or 
Google’s Gemma can not only be extremely complicat-
ed, painfully slow and memory-intensive, but also 
buggy. For example, Google’s open model Gemma was 
released to subpar results, however Unsloth managed 
to find and fix 8 critical bugs in the model which greatly 
effected the model’s performance. Their fixes were so 
pivotal that Andrej Kaparthyu (one of OpenAI’s 
co-founder) gave them a shoutout on Twitter (X) and 
their fixes were upstreamed to the official Google and 
Hugging Face implementations.

Unsloth’s Breakthrough Optimizations

What makes Unsloth so fast and efficient? Under the 
hood, it uses a combination of advanced techniques 
and engineering tricks to supercharge the training 
process:

Custom GPU Kernels: The Unsloth team rewrote many 
training operations from scratch in highly optimized 
GPU code (using tools like OpenAI’s Triton). By manually 
deriving gradients and hand-writing bespoke GPU 
kernels, Unsloth squeezes out every drop of perfor-
mance from the hardware. These custom kernels 
bypass the usual overhead of generic frameworks, 
magically accelerating training without any hardware 
change.

Dynamic Quantization: Unsloth supports dynamic 
4-bit fine-tuning (QLoRA), which significantly reduces 

memory usage while preserving most of its accuracy at 
the same time. By selectively quantizing layers, 
Unsloth’s dynamic quantization is done in a smart way 
that preserves most of the model’s accuracy, so you 
don’t lose model quality while saving memory.

ML Algorithms: Techniques like Unsloth’s gradient 
checkpointing algorithm (saving intermediate states 
and recomputing them on the fly) and in-place opera-
tions are used to minimize memory overhead. In prac-
tice, this means far lower peak memory during training 
– users have reported seeing less than half the usual 
memory usage for the same fine-tuning task. By care-
fully managing allocations and computation order, 
Unsloth ensures your GPUs aren’t sitting idle or memo-
ry-starved at any point.

Unsloth is easy to adopt into your existing workflow. It’s 
built on PyTorch and Hugging Face, which means you 
can use Unsloth’s features inside the familiar PyTorch 
training loops or Hugging Face Transformers APIs with 
minimal changes. In fact, installing Unsloth is as simple 
as a ‘pip install unsloth’ command on Linux devices, and 
you’re ready to go. The library also works directly on 
Windows and provides interfaces (like FastVisionModel 

or Unsloth-optimized model classes) that mirror the 
usual Hugging Face model classes, so you can load 
models and fine-tune them just as you normally would 
– only much faster. There’s no need to learn a new 
framework from scratch; Unsloth fits right in with the 
tools you already know and love, making acceleration 
virtually plug-and-play for developers.

How Unsloth Works Its Magic

Ease of Use
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Also, fine-tuning the popular Llama model with stan-
dard methods originally took around 85 hours on a 
single GPU (Introducing Unsloth). Large models often 
won’t even fit into a single GPU’s memory, forcing you to 
use multiple expensive GPUs or reduce batch sizes to 

make training feasible. Unsloth makes it easier, faster, 
and more accurate than ever to train custom AI models 
- completely free, and entirely on your own local hard-
ware.

Unsloth’s impact has already been noticed by teams at 
major tech companies like Hugging Face, Microsoft, 
NVIDIA, and Meta, who have been adopters of Unsloth 
but have also collaborated with them previously.
Some recent fixes include:

Google Gemma Models: Unsloth found and fixed 8 
critical bugs in Google’s Gemma LLMs, working with 
Google’s team (earning a shout-out from Andrej Karpa-
thy). These fixes resolved loss discrepancies and other 
issues that hindered Gemma’s initial promise. A 
detailed case study will be shown below.

Microsoft’s Phi-4: Unsloth identified and addressed 
several issues in Microsoft's Phi-4 model to enhance its 
performance and their fixes were up streamed to the 
official Phi-4 model. These fixes collectively improved 
the accuracy and reliability of the Phi-4 model, as 
evidenced by higher scores on benchmarks like the 
OpenLLM Leaderboard.

Meta’s Llama 3: The team resolved numerous fine-tun-
ing issues in Meta’s Llama 3, greatly improving training 
stability and accuracy. Many community members had 
found Llama 3 fine-tunes “broken,” but Unsloth identi-

fied causes (e.g. double BOS tokens, untrained special 
tokens) and auto-fixes them behind the scenes. This 
ensures Llama 3 models fine-tune correctly with 
Unsloth when they otherwise would fail.

Universal Training Bugs: Unsloth even patched a 
universal Gradient Accumulation bug that affected 
everyone’s LLM training (not just Unsloth users). The 
flaw caused higher losses with accumulated batches; 
Unsloth’s fix ensures accurate loss computation during 
training. This improvement was upstreamed so that the 
entire community benefits, reflecting Unsloth’s com-
mitment to broader optimization.

Through these and many other fixes (e.g. issues in 
Gemma 2, Qwen-2.5, Phi-4), Unsloth continuously 
fine-tunes its engine. Each bug fix is quickly rolled into 
the library, boosting performance or stability. This rapid, 
proactive approach means Unsloth users always have 
an up-to-date tool that “just works,” even as new 
models and issues emerge. The result is a fast-evolving 
project that prioritizes robust, correct training for 
everyone.

Before we dive into Unsloth’s framework and past work, 
we need to understand the meaning and use cases 
behind fine-tuning. Fine-tuning an LLM customizes its 
behavior, enhances domain knowledge, and optimizes 
performance for specific tasks. Fine-tuning is the 
process of updating the actual "brains" of the language 
model through some process called back-propagation.
By fine-tuning a pre-trained model (e.g. Llama-3.1-8B) 
on a specialized dataset, you can:

Update Knowledge: Introduce new domain-specific 
information.

Customize Behavior: Adjust the model’s tone, person-
ality, or response style.

Optimize for Tasks: Improve accuracy and relevance 
for specific use cases.

Example usecases:

Train LLM to predict if a headline impacts a company 
positively or negatively.

Use historical customer interactions for more accurate 
and custom responses.

Fine-tune LLM on legal texts for contract analysis, case 
law research, and compliance.

You can think of a fine-tuned model as a specialized 
agent designed to do specific tasks more effectively 
and efficiently. Fine-tuning can replicate all of RAG's 
capabilities, but not vice versa. 

However, fine-tuning open models like Meta’s Llama or 
Google’s Gemma can not only be extremely complicat-
ed, painfully slow and memory-intensive, but also 
buggy. For example, Google’s open model Gemma was 
released to subpar results, however Unsloth managed 
to find and fix 8 critical bugs in the model which greatly 
effected the model’s performance. Their fixes were so 
pivotal that Andrej Kaparthyu (one of OpenAI’s 
co-founder) gave them a shoutout on Twitter (X) and 
their fixes were upstreamed to the official Google and 
Hugging Face implementations.

6.RoPE Calculation Methodology:
Changed calculation method for RoPE embeddings 
from reciprocal multiplication (a*(1/x)) to direct division 
(a/x), reducing computational errors.

7.RoPE Computation in float32:
Improved precision of RoPE computations by transi-

tioning from bfloat16 to float32, integrated in Hugging 
Face Transformers v4.38.2.
8.Approximate GELU Activation:
Replaced the exact GELU activation function with the 
computationally efficient approximate (tanh) version, 
enhancing performance without significant accuracy 
loss.

BUG FIXES + OPEN-SOURCE 
CONTRIBUTIONS

Unsloth’s developers iterate quickly to squash bugs and 
improve performance. The team actively tracks issues 

in new model releases and pushes out fixes often within 
days.

Continuous Bug Fixes & Optimization

Trusted by Industry Leaders

Unsloth identified and addressed several critical issues 
in Google's Gemma language model. Previously the 
Gemma model would give poor, gibberish or endless 
outputs however, Unsloth’s bug fixes solved all these 
issues. Unsloth’s changes were upstreamed to the 
official Gemma and Hugging Face implementations:

1. Inclusion of the <bos> Token:
The <bos> (Beginning of Sequence) token was missing, 
causing discrepancies during fine-tuning. Incorporating 
this token resolves accuracy issues.

2. Correction of <end_of_turn> Token Typo:
Fixed typo from <end_of_turn>model to 
<end_of_turn>, ensuring proper parsing of conversa-
tional data.

3.Precision in Embedding Scaling:
Addressed precision errors from casting embedding 
scaling to bfloat16. Precise calculation prevents stability 
issues.

4.Layer Normalization in float32:
Improved numerical stability by performing layer 
normalization in higher precision (float32) rather than 
lower precision formats.

5.RoPE Position Encoding Precision:
Corrected RoPE (Rotary Position Embeddings) position 
casting to int32, aligning with best practices and main-
taining precision over long sequences.

Case study: Unsloth’s Gemma bug fixes
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Also, fine-tuning the popular Llama model with stan-
dard methods originally took around 85 hours on a 
single GPU (Introducing Unsloth). Large models often 
won’t even fit into a single GPU’s memory, forcing you to 
use multiple expensive GPUs or reduce batch sizes to 

make training feasible. Unsloth makes it easier, faster, 
and more accurate than ever to train custom AI models 
- completely free, and entirely on your own local hard-
ware.

Before we dive into Unsloth’s framework and past work, 
we need to understand the meaning and use cases 
behind fine-tuning. Fine-tuning an LLM customizes its 
behavior, enhances domain knowledge, and optimizes 
performance for specific tasks. Fine-tuning is the 
process of updating the actual "brains" of the language 
model through some process called back-propagation.
By fine-tuning a pre-trained model (e.g. Llama-3.1-8B) 
on a specialized dataset, you can:

Update Knowledge: Introduce new domain-specific 
information.

Customize Behavior: Adjust the model’s tone, person-
ality, or response style.

Optimize for Tasks: Improve accuracy and relevance 
for specific use cases.

Example usecases:

Train LLM to predict if a headline impacts a company 
positively or negatively.

Use historical customer interactions for more accurate 
and custom responses.

Fine-tune LLM on legal texts for contract analysis, case 
law research, and compliance.

You can think of a fine-tuned model as a specialized 
agent designed to do specific tasks more effectively 
and efficiently. Fine-tuning can replicate all of RAG's 
capabilities, but not vice versa. 

However, fine-tuning open models like Meta’s Llama or 
Google’s Gemma can not only be extremely complicat-
ed, painfully slow and memory-intensive, but also 
buggy. For example, Google’s open model Gemma was 
released to subpar results, however Unsloth managed 
to find and fix 8 critical bugs in the model which greatly 
effected the model’s performance. Their fixes were so 
pivotal that Andrej Kaparthyu (one of OpenAI’s 
co-founder) gave them a shoutout on Twitter (X) and 
their fixes were upstreamed to the official Google and 
Hugging Face implementations.

Unsloth thrives on a community-driven development 
model, collaborating with both open-source contribu-
tors and industry leaders. The project was built to be 
friendly and plug-and-play with popular AI ecosystems. 
For example, Unsloth is fully compatible with Hugging 
Face’s Transformers and TRL libraries, and Hugging Face 
even partnered with Unsloth for an official integration 
blog post. This deep integration means you can use 
Unsloth with Hugging Face trainers (SFT, DPO, PPO) out 
of the box, speeding up fine-tunes with no code chang-
es. The Unsloth team (a duo of two brothers) actively 
engages with the open-source community on GitHub 
and Discord, welcoming contributions and feedback.

Crucially, Unsloth’s development involves direct collab-
oration with model creators and other AI projects. The 
team works closely with researchers at companies like 
Google – for instance, they coordinated with Google’s 
Gemma team to patch bugs in Gemma-2 models. They 
directly support llama.cpp, Ollama and vLLM 
(open-source inference engines) to ensure fixes for 
Llama and Gemma propagate across tools.The direct 
integrations also allow for easy exporting of fine-tuned 
models to llama.cpp, Open Web UI etc. These partner-
ships highlight Unsloth’s role as a connector in the AI 
ecosystem – it doesn’t work in isolation, but rather 
integrates with the best tools and helps improve them.

Unsloth’s technology aligns with AI leaders’ platforms as 
well. It offers first-class support for Meta’s Llama family 
– from Llama 2 to the latest Llama 3 – including vision 
variants. When Llama 3.3 launched, Unsloth immediate-
ly enabled fine-tuning of even the 70B model on a 
single 41 GB GPU, and fixed bugs in Llama 3’s base 
weights to ensure finetunes weren’t “useless or poor”. 
Similarly, Unsloth stays in sync with Microsoft’s open 
models: the team quickly updated Unsloth to support 
Microsoft’s Phi-3 and Phi-4 release (Llama-fying it for 
compatibility), and community benchmarks showed an 
Unsloth Dynamic Quantization of Phi-4 matching the 
original Microsoft version’s accuracy. On the hardware 
side, Unsloth is optimized for NVIDIA GPUs at every level 
– it supports everything from a GTX 1070 to the high-
est-end H100 tensor core GPU. By leveraging custom 
GPU kernels (via OpenAI’s Triton) and advanced atten-
tion optimization, Unsloth squeezes maximum training 
efficiency out of NVIDIA hardware. This broad compati-
bility means whether you’re using Meta’s latest model, 
fine-tuning a Microsoft-released LLM, or running on 
NVIDIA GPUs in the cloud or locally, Unsloth integrates 
seamlessly into your workflow. It’s a true communi-
ty-driven project, built hand-in-hand with researchers, 
engineers, and enthusiasts across the AI landscape.
 

By the numbers, Unsloth’s impact is impressive:

Speed: Fine-tuning jobs run dramatically faster. Unsloth 
often achieves ~2× faster training out-of-the-box, and 
in some benchmarks it’s been up to 2.7× faster than 
standard Hugging Face implementations + Flash Atten-
tion (FA2).

Memory Efficiency: GPU memory usage drops 
50–90% on average when using Unsloth’s optimized 
kernels. In best-case scenarios, it has shown a 74% 
reduction in VRAM needed for the same task. Lower 
memory footprint lets users fine-tune larger models or 
batch sizes on the same hardware (or even use smaller 
GPUs than normally required).

Context Length: Unsloth pushes the limits of context 
windows. It enables up to 13× longer on certain ones 
(e.g. Llama 3.3) by combining RoPE scaling and gradient 
checkpointing. This unlocks training and using LLMs on 
extremely long documents or dialogues that vanilla 
setups couldn’t handle.

Community Adoption: The AI community has 
embraced Unsloth enthusiastically. Its models on Hug-
ging Face have been downloaded 8 million+ times per 
month, and the library’s GitHub repository surpassed 
30,000 stars. Unsloth was also selected for the GitHub 
Accelerator Program, underscoring its potential and 
community support.

These gains translate to real-world benefits for AI 
developers and researchers. Unsloth’s optimizations 
make advanced LLM fine-tuning more accessible and 
faster for everyone. For example, tasks that once 
demanded an expensive high-memory GPU can now be 
done on a consumer-grade setup or even free cloud 
tiers. The Unsloth team often demonstrates this with 
community notebooks – e.g. using Unsloth, a 12–14 
billion parameter model can be fine-tuned on a free 
Colab GPU (15–16 GB), something previously infeasible. 
One community member noted that a Phi-3 14B model 
“fits comfortably in a free Tesla T4 Colab with Unsloth, 
and you can fit 3–4× longer context lengths than 
[FlashAttention] 2”. In other words, Unsloth lets you do 
more with less – more sequence length, bigger models, 
or larger batches on the same hardware, which acceler-
ates experimentation and iteration in AI workflows.

Importantly, this speed-up and efficiency come with no 
downsides to model performance. Unsloth was 
designed to preserve exact accuracy while boosting 
throughput. There’s ample evidence that faster 
fine-tuning works without accuracy degradation: for 
instance, an Unsloth’s Phi-3 model finetune achieved 
comparable accuracy to the original Microsoft-trained 
version on the HuggingFace Open LLM Leaderboard. In 
fact, Unsloth’s version even attained a slightly lower 
training loss than the official release, thanks to precision 
improvements in its kernels. Community contributors 
have replicated these results, showing that 
Unsloth-trained models perform on par with (or even 
better than) standard-trained models, all while saving 
time and memory.

6.RoPE Calculation Methodology:
Changed calculation method for RoPE embeddings 
from reciprocal multiplication (a*(1/x)) to direct division 
(a/x), reducing computational errors.

7.RoPE Computation in float32:
Improved precision of RoPE computations by transi-

tioning from bfloat16 to float32, integrated in Hugging 
Face Transformers v4.38.2.
8.Approximate GELU Activation:
Replaced the exact GELU activation function with the 
computationally efficient approximate (tanh) version, 
enhancing performance without significant accuracy 
loss.

Unsloth identified and addressed several critical issues 
in Google's Gemma language model. Previously the 
Gemma model would give poor, gibberish or endless 
outputs however, Unsloth’s bug fixes solved all these 
issues. Unsloth’s changes were upstreamed to the 
official Gemma and Hugging Face implementations:

1. Inclusion of the <bos> Token:
The <bos> (Beginning of Sequence) token was missing, 
causing discrepancies during fine-tuning. Incorporating 
this token resolves accuracy issues.

2. Correction of <end_of_turn> Token Typo:
Fixed typo from <end_of_turn>model to 
<end_of_turn>, ensuring proper parsing of conversa-
tional data.

3.Precision in Embedding Scaling:
Addressed precision errors from casting embedding 
scaling to bfloat16. Precise calculation prevents stability 
issues.

4.Layer Normalization in float32:
Improved numerical stability by performing layer 
normalization in higher precision (float32) rather than 
lower precision formats.

5.RoPE Position Encoding Precision:
Corrected RoPE (Rotary Position Embeddings) position 
casting to int32, aligning with best practices and main-
taining precision over long sequences.

Collaborations & Integrations

Usage Statistics & Real-World Impact

Published by Marktechpost AI Media, Inc 27

Open Source AI



Also, fine-tuning the popular Llama model with stan-
dard methods originally took around 85 hours on a 
single GPU (Introducing Unsloth). Large models often 
won’t even fit into a single GPU’s memory, forcing you to 
use multiple expensive GPUs or reduce batch sizes to 

make training feasible. Unsloth makes it easier, faster, 
and more accurate than ever to train custom AI models 
- completely free, and entirely on your own local hard-
ware.

Before we dive into Unsloth’s framework and past work, 
we need to understand the meaning and use cases 
behind fine-tuning. Fine-tuning an LLM customizes its 
behavior, enhances domain knowledge, and optimizes 
performance for specific tasks. Fine-tuning is the 
process of updating the actual "brains" of the language 
model through some process called back-propagation.
By fine-tuning a pre-trained model (e.g. Llama-3.1-8B) 
on a specialized dataset, you can:

Update Knowledge: Introduce new domain-specific 
information.

Customize Behavior: Adjust the model’s tone, person-
ality, or response style.

Optimize for Tasks: Improve accuracy and relevance 
for specific use cases.

Example usecases:

Train LLM to predict if a headline impacts a company 
positively or negatively.

Use historical customer interactions for more accurate 
and custom responses.

Fine-tune LLM on legal texts for contract analysis, case 
law research, and compliance.

You can think of a fine-tuned model as a specialized 
agent designed to do specific tasks more effectively 
and efficiently. Fine-tuning can replicate all of RAG's 
capabilities, but not vice versa. 

However, fine-tuning open models like Meta’s Llama or 
Google’s Gemma can not only be extremely complicat-
ed, painfully slow and memory-intensive, but also 
buggy. For example, Google’s open model Gemma was 
released to subpar results, however Unsloth managed 
to find and fix 8 critical bugs in the model which greatly 
effected the model’s performance. Their fixes were so 
pivotal that Andrej Kaparthyu (one of OpenAI’s 
co-founder) gave them a shoutout on Twitter (X) and 
their fixes were upstreamed to the official Google and 
Hugging Face implementations.

By the numbers, Unsloth’s impact is impressive:

Speed: Fine-tuning jobs run dramatically faster. Unsloth 
often achieves ~2× faster training out-of-the-box, and 
in some benchmarks it’s been up to 2.7× faster than 
standard Hugging Face implementations + Flash Atten-
tion (FA2).

Memory Efficiency: GPU memory usage drops 
50–90% on average when using Unsloth’s optimized 
kernels. In best-case scenarios, it has shown a 74% 
reduction in VRAM needed for the same task. Lower 
memory footprint lets users fine-tune larger models or 
batch sizes on the same hardware (or even use smaller 
GPUs than normally required).

Context Length: Unsloth pushes the limits of context 
windows. It enables up to 13× longer on certain ones 
(e.g. Llama 3.3) by combining RoPE scaling and gradient 
checkpointing. This unlocks training and using LLMs on 
extremely long documents or dialogues that vanilla 
setups couldn’t handle.

Community Adoption: The AI community has 
embraced Unsloth enthusiastically. Its models on Hug-
ging Face have been downloaded 8 million+ times per 
month, and the library’s GitHub repository surpassed 
30,000 stars. Unsloth was also selected for the GitHub 
Accelerator Program, underscoring its potential and 
community support.

These gains translate to real-world benefits for AI 
developers and researchers. Unsloth’s optimizations 
make advanced LLM fine-tuning more accessible and 
faster for everyone. For example, tasks that once 
demanded an expensive high-memory GPU can now be 
done on a consumer-grade setup or even free cloud 
tiers. The Unsloth team often demonstrates this with 
community notebooks – e.g. using Unsloth, a 12–14 
billion parameter model can be fine-tuned on a free 
Colab GPU (15–16 GB), something previously infeasible. 
One community member noted that a Phi-3 14B model 
“fits comfortably in a free Tesla T4 Colab with Unsloth, 
and you can fit 3–4× longer context lengths than 
[FlashAttention] 2”. In other words, Unsloth lets you do 
more with less – more sequence length, bigger models, 
or larger batches on the same hardware, which acceler-
ates experimentation and iteration in AI workflows.

Importantly, this speed-up and efficiency come with no 
downsides to model performance. Unsloth was 
designed to preserve exact accuracy while boosting 
throughput. There’s ample evidence that faster 
fine-tuning works without accuracy degradation: for 
instance, an Unsloth’s Phi-3 model finetune achieved 
comparable accuracy to the original Microsoft-trained 
version on the HuggingFace Open LLM Leaderboard. In 
fact, Unsloth’s version even attained a slightly lower 
training loss than the official release, thanks to precision 
improvements in its kernels. Community contributors 
have replicated these results, showing that 
Unsloth-trained models perform on par with (or even 
better than) standard-trained models, all while saving 
time and memory.

In summary, Unsloth AI has rapidly grown into a beloved 
tool in the LLM fine-tuning community. Its friendly, 
enthusiastic developers engage with users to drive 
constant improvements, embodying a spirit of 
open-source collaboration and rapid iteration. From 
fixing bugs that improve model reliability, to collaborat-
ing with major enterprises for seamless integration, to 
delivering tangible speed and efficiency boosts – 
Unsloth has had a tangible impact on modern AI work-
flows. It empowers researchers and hobbyists alike to 
fine-tune large models quickly, on modest hardware, 
and with confidence that results will be accurate. With 
Unsloth’s continuous optimization and communi-
ty-driven development ethos, the process of training 

custom AI models is becoming faster, easier, and more 
accessible for all. The sloth may be the project’s 
mascot, but Unsloth is helping the AI world move at a 
lightning pace – all while keeping a friendly, supportive 
vibe along the journey.

Be sure to ⭐Star their GitHub repo or join their Discord, 
Twitter (x) and Reddit communities to show your sup-
port or ask any questions!

Conclusion
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Also, fine-tuning the popular Llama model with stan-
dard methods originally took around 85 hours on a 
single GPU (Introducing Unsloth). Large models often 
won’t even fit into a single GPU’s memory, forcing you to 
use multiple expensive GPUs or reduce batch sizes to 

make training feasible. Unsloth makes it easier, faster, 
and more accurate than ever to train custom AI models 
- completely free, and entirely on your own local hard-
ware.

Before we dive into Unsloth’s framework and past work, 
we need to understand the meaning and use cases 
behind fine-tuning. Fine-tuning an LLM customizes its 
behavior, enhances domain knowledge, and optimizes 
performance for specific tasks. Fine-tuning is the 
process of updating the actual "brains" of the language 
model through some process called back-propagation.
By fine-tuning a pre-trained model (e.g. Llama-3.1-8B) 
on a specialized dataset, you can:

Update Knowledge: Introduce new domain-specific 
information.

Customize Behavior: Adjust the model’s tone, person-
ality, or response style.

Optimize for Tasks: Improve accuracy and relevance 
for specific use cases.

Example usecases:

Train LLM to predict if a headline impacts a company 
positively or negatively.

Use historical customer interactions for more accurate 
and custom responses.

Fine-tune LLM on legal texts for contract analysis, case 
law research, and compliance.

You can think of a fine-tuned model as a specialized 
agent designed to do specific tasks more effectively 
and efficiently. Fine-tuning can replicate all of RAG's 
capabilities, but not vice versa. 

However, fine-tuning open models like Meta’s Llama or 
Google’s Gemma can not only be extremely complicat-
ed, painfully slow and memory-intensive, but also 
buggy. For example, Google’s open model Gemma was 
released to subpar results, however Unsloth managed 
to find and fix 8 critical bugs in the model which greatly 
effected the model’s performance. Their fixes were so 
pivotal that Andrej Kaparthyu (one of OpenAI’s 
co-founder) gave them a shoutout on Twitter (X) and 
their fixes were upstreamed to the official Google and 
Hugging Face implementations.
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products. His previous projects include PicHance, 
Scrilys, BudgetML, and you-tldr. Based on his 
learnings from deploying ML in production for 
predictive maintenance use-cases in his previous 
startup, he co-created ZenML, an open-source 
MLOps framework for creating production grade 
ML pipelines on any infrastructure stack.

Co-founder  & CTO of ZenML

Also, fine-tuning the popular Llama model with stan-
dard methods originally took around 85 hours on a 
single GPU (Introducing Unsloth). Large models often 
won’t even fit into a single GPU’s memory, forcing you to 
use multiple expensive GPUs or reduce batch sizes to 

make training feasible. Unsloth makes it easier, faster, 
and more accurate than ever to train custom AI models 
- completely free, and entirely on your own local hard-
ware.

Before we dive into Unsloth’s framework and past work, 
we need to understand the meaning and use cases 
behind fine-tuning. Fine-tuning an LLM customizes its 
behavior, enhances domain knowledge, and optimizes 
performance for specific tasks. Fine-tuning is the 
process of updating the actual "brains" of the language 
model through some process called back-propagation.
By fine-tuning a pre-trained model (e.g. Llama-3.1-8B) 
on a specialized dataset, you can:

Update Knowledge: Introduce new domain-specific 
information.

Customize Behavior: Adjust the model’s tone, person-
ality, or response style.

Optimize for Tasks: Improve accuracy and relevance 
for specific use cases.

Example usecases:

Train LLM to predict if a headline impacts a company 
positively or negatively.

Use historical customer interactions for more accurate 
and custom responses.

Fine-tune LLM on legal texts for contract analysis, case 
law research, and compliance.

You can think of a fine-tuned model as a specialized 
agent designed to do specific tasks more effectively 
and efficiently. Fine-tuning can replicate all of RAG's 
capabilities, but not vice versa. 

However, fine-tuning open models like Meta’s Llama or 
Google’s Gemma can not only be extremely complicat-
ed, painfully slow and memory-intensive, but also 
buggy. For example, Google’s open model Gemma was 
released to subpar results, however Unsloth managed 
to find and fix 8 critical bugs in the model which greatly 
effected the model’s performance. Their fixes were so 
pivotal that Andrej Kaparthyu (one of OpenAI’s 
co-founder) gave them a shoutout on Twitter (X) and 
their fixes were upstreamed to the official Google and 
Hugging Face implementations.
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From Early Projects to ZenML: Given your rich background in software develop-
ment and ML engineering—from pioneering projects like BudgetML to co-founding 
ZenML and building production pipelines at maiot.io—how has your personal jour-
ney influenced your approach to creating an open-source ecosystem for produc-
tion-ready AI?

My journey from early software development to 
co-founding ZenML has deeply shaped how I approach 
building open-source tools for AI production. Working 
on BudgetML taught me that accessibility in ML infra-
structure is critical - not everyone has enterprise-level 
resources, yet everyone deserves access to robust 
tooling. 

At my first startup maiot.io, I witnessed firsthand how 
fragmented the MLOps landscape was, with teams 
cobbling together solutions that often broke in produc-
tion. This fragmentation creates real business pain 
points - for example, many enterprises struggle with 
lengthy time-to-market cycles for their ML models due 
to these exact challenges.

These experiences drove me to create ZenML with a 
focus on being production-first, not production-even-

tual. We built an ecosystem that brings structure to the 
chaos of managing models, ensuring that what works in 
your experimental environment transitions smoothly to 
production. Our approach has consistently helped 
organizations reduce deployment times and increase 
efficiency in their ML workflows.

The open-source approach wasn't just a distribution 
strategy—it was foundational to our belief that MLOps 
should be democratized, allowing teams of all sizes to 
benefit from best practices developed across the 
industry. We've seen organizations of all sizes—from 
startups to enterprises—accelerate their ML develop-
ment cycles by 50-80% by adopting these standard-
ized, production-first practices.

ZenML grew out of our experience working in predictive 
maintenance. We were essentially functioning as con-
sultants, implementing solutions for various clients. A 
little over four years ago when we started, there were far 
fewer tools available and those that existed lacked 
maturity compared to today's options.

We quickly discovered that different customers had 
vastly different needs—some wanted AWS, others 
preferred GCP. While Kubeflow was emerging as a solu-
tion that operated on top of Kubernetes, it wasn't yet 

the robust MLOps framework that ZenML offers now.

The pivotal challenge was finding ourselves repeatedly 
writing custom glue code for each client implementa-
tion. This pattern of constantly developing similar but 
platform-specific solutions highlighted the clear need 
for a more unified approach. We initially built ZenML on 
top of TensorFlow's TFX, but eventually removed that 
dependency to develop our own implementation that 
could better serve diverse production environments.

From Lab to Launch: Could you share a pivotal moment or technical challenge that 
underscored the need for a robust MLOps framework in your transition from ex-
perimental models to production systems?

Proprietary MLOps solutions offer polished experiences 
but often lack adaptability. Their biggest drawback is 
the "black box" problem—when something breaks in 
production, teams are left waiting for vendor support. 
With open-source tools like ZenML, teams can inspect, 
debug, and extend the tooling themselves.

This transparency enables agility. Open-source frame-
works incorporate innovations faster than quarterly 
releases from proprietary vendors. For LLMs, where 
best practices evolve weekly, this speed is invaluable.

The power of community-driven innovation is exempli-
fied by one of our most transformative contributions—a 
developer who built the "Vertex" orchestrator integra-
tion for Google Cloud Platform. This wasn't just another 
integration—it represented a completely new approach 
to orchestrating pipelines on GCP that opened up an 
entirely new market for us.

Prior to this contribution, our GCP users had limited 
options. The community member developed a com-
prehensive Vertex AI integration that enabled seamless 
orchestration in the Google Cloud ecosystem. Today,  

Open-Source vs. Closed-Source in MLOps: While open-source solutions are cele-
brated for innovation, how do they compare with proprietary options in production 
AI workflows? Can you share how community contributions have enhanced Zen-
ML's capabilities in solving real MLOps challenges?

Also, fine-tuning the popular Llama model with stan-
dard methods originally took around 85 hours on a 
single GPU (Introducing Unsloth). Large models often 
won’t even fit into a single GPU’s memory, forcing you to 
use multiple expensive GPUs or reduce batch sizes to 

make training feasible. Unsloth makes it easier, faster, 
and more accurate than ever to train custom AI models 
- completely free, and entirely on your own local hard-
ware.

Before we dive into Unsloth’s framework and past work, 
we need to understand the meaning and use cases 
behind fine-tuning. Fine-tuning an LLM customizes its 
behavior, enhances domain knowledge, and optimizes 
performance for specific tasks. Fine-tuning is the 
process of updating the actual "brains" of the language 
model through some process called back-propagation.
By fine-tuning a pre-trained model (e.g. Llama-3.1-8B) 
on a specialized dataset, you can:

Update Knowledge: Introduce new domain-specific 
information.

Customize Behavior: Adjust the model’s tone, person-
ality, or response style.

Optimize for Tasks: Improve accuracy and relevance 
for specific use cases.

Example usecases:

Train LLM to predict if a headline impacts a company 
positively or negatively.

Use historical customer interactions for more accurate 
and custom responses.

Fine-tune LLM on legal texts for contract analysis, case 
law research, and compliance.

You can think of a fine-tuned model as a specialized 
agent designed to do specific tasks more effectively 
and efficiently. Fine-tuning can replicate all of RAG's 
capabilities, but not vice versa. 

However, fine-tuning open models like Meta’s Llama or 
Google’s Gemma can not only be extremely complicat-
ed, painfully slow and memory-intensive, but also 
buggy. For example, Google’s open model Gemma was 
released to subpar results, however Unsloth managed 
to find and fix 8 critical bugs in the model which greatly 
effected the model’s performance. Their fixes were so 
pivotal that Andrej Kaparthyu (one of OpenAI’s 
co-founder) gave them a shoutout on Twitter (X) and 
their fixes were upstreamed to the official Google and 
Hugging Face implementations.
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Integrating LLMs into Production: With the surge in generative AI and large lan-
guage models, what are the key obstacles you've encountered in LLMOps, and how 
does ZenML help mitigate these challenges?

Streamlining MLOps Workflows: What best practices would you recommend for 
teams aiming to build secure, scalable ML pipelines using open-source tools, and 
how does ZenML facilitate this process?

Engineering Meets Data Science: Your career spans both software engineering and 
ML engineering—how has this dual expertise influenced your design of MLOps 
tools that cater to real-world production challenges?

it's one of our most popular integrations, powering 
production ML systems across numerous enterprises 
and significantly expanding our user base.

This perfectly demonstrates the value of open-source 
in MLOps—community members solve their specific 

challenges and contribute back, creating value for the 
entire ecosystem. That said, the ideal approach is often 
hybrid—using open-source frameworks as core infra-
structure while integrating specialized proprietary tools 
where they add unique value.

LLMOps presents unique challenges including prompt 
engineering management, complex evaluation metrics, 
escalating costs, and pipeline complexity.

ZenML helps by providing:

Structured pipelines for LLM workflows, tracking all 
components from prompts to post-processing logic
Integration with LLM-specific evaluation frameworks

Caching mechanisms to control costs
Lineage tracking for debugging complex LLM chains

Our approach bridges traditional MLOps and LLMOps, 
allowing teams to leverage established practices while 
addressing LLM-specific challenges. ZenML's extensi-
ble architecture lets teams incorporate emerging 
LLMOps tools while maintaining reliability and gover-
nance.

For teams building ML pipelines with open-source 
tools, I recommend:
Start with reproducibility through strict versioning
Design for observability from day one
Embrace modularity with interchangeable components
Automate testing for data, models, and security
Standardize environments through containerization

ZenML facilitates these practices with a Pythonic 
framework that enforces reproducibility, integrates with 
popular MLOps tools, supports modular pipeline steps, 
provides testing hooks, and enables seamless contain-
erization.

We've seen these principles transform organizations 
like Adeo Leroy Merlin. After implementing these best 
practices through ZenML, they reduced their ML devel-
opment cycle by 80%, with their small team of data 
scientists now deploying new ML use cases from 
research to production in days rather than months, 
delivering tangible business value across multiple 
production models.

The key insight: MLOps isn't a product you adopt, but a 
practice you implement. Our framework makes follow-
ing best practices the path of least resistance while 
maintaining flexibility.

My dual background has revealed a fundamental 
disconnect between data science and software engi-
neering cultures. Data scientists prioritize experimen-
tation and model performance, while software engi-
neers focus on reliability and maintainability. This divide 
creates significant friction when deploying ML systems 
to production.

ZenML was designed specifically to bridge this gap by 
creating a unified framework where both disciplines can 
thrive. Our Python-first APIs provide the flexibility data 
scientists need while enforcing software engineering 

best practices like version control, modularity, and 
reproducibility. We've embedded these principles into 
the framework itself, making the right way the easy way.

This approach has proven particularly valuable for LLM 
projects, where the technical debt accumulated during 
prototyping can become crippling in production. By 
providing a common language and workflow for both 
researchers and engineers, we've helped organizations 
reduce their time-to-production while simultaneously 
improving system reliability and governance.

Also, fine-tuning the popular Llama model with stan-
dard methods originally took around 85 hours on a 
single GPU (Introducing Unsloth). Large models often 
won’t even fit into a single GPU’s memory, forcing you to 
use multiple expensive GPUs or reduce batch sizes to 

make training feasible. Unsloth makes it easier, faster, 
and more accurate than ever to train custom AI models 
- completely free, and entirely on your own local hard-
ware.

Before we dive into Unsloth’s framework and past work, 
we need to understand the meaning and use cases 
behind fine-tuning. Fine-tuning an LLM customizes its 
behavior, enhances domain knowledge, and optimizes 
performance for specific tasks. Fine-tuning is the 
process of updating the actual "brains" of the language 
model through some process called back-propagation.
By fine-tuning a pre-trained model (e.g. Llama-3.1-8B) 
on a specialized dataset, you can:

Update Knowledge: Introduce new domain-specific 
information.

Customize Behavior: Adjust the model’s tone, person-
ality, or response style.

Optimize for Tasks: Improve accuracy and relevance 
for specific use cases.

Example usecases:

Train LLM to predict if a headline impacts a company 
positively or negatively.

Use historical customer interactions for more accurate 
and custom responses.

Fine-tune LLM on legal texts for contract analysis, case 
law research, and compliance.

You can think of a fine-tuned model as a specialized 
agent designed to do specific tasks more effectively 
and efficiently. Fine-tuning can replicate all of RAG's 
capabilities, but not vice versa. 

However, fine-tuning open models like Meta’s Llama or 
Google’s Gemma can not only be extremely complicat-
ed, painfully slow and memory-intensive, but also 
buggy. For example, Google’s open model Gemma was 
released to subpar results, however Unsloth managed 
to find and fix 8 critical bugs in the model which greatly 
effected the model’s performance. Their fixes were so 
pivotal that Andrej Kaparthyu (one of OpenAI’s 
co-founder) gave them a shoutout on Twitter (X) and 
their fixes were upstreamed to the official Google and 
Hugging Face implementations.
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MLOps vs. LLMOps: In your view, what distinct challenges do traditional MLOps 
face compared to LLMOps, and how should open-source frameworks evolve to ad-
dress these differences?

Security and Compliance in Production: With data privacy and security being criti-
cal, what measures does ZenML implement to ensure that production AI models 
are secure, especially when dealing with dynamic, data-intensive LLM operations?

Future Trends in AI: What emerging trends for MLOps and LLMOps do you believe 
will redefine production workflows over the next few years, and how is ZenML posi-
tioning itself to lead these changes?

Fostering Community Engagement: Open source thrives on collaboration—what 
initiatives or strategies have you found most effective in engaging the community 
around ZenML and encouraging contributions in MLOps and LLMOps?

ZenML implements robust security measures at every 
level:

Granular pipeline-level access controls with role-based 
permissions

Comprehensive artifact provenance tracking for com-
plete auditability

Secure handling of API keys and credentials through 
encrypted storage

Data governance integrations for validation, compli-
ance, and PII detection

Containerization for deployment isolation and attack 
surface reduction

These measures enable teams to implement security 
by design, not as an afterthought. Our experience 
shows that embedding security into the workflow from 
the beginning dramatically reduces vulnerabilities 
compared to retrofitting security later. This proactive 
approach is particularly crucial for LLM applications, 
where complex data flows and potential prompt injec-
tion attacks create unique security challenges that 
traditional ML systems don't face.

Agents and workflows represent a critical emerging 
trend in AI. Anthropic notably differentiated between 
these approaches in their blog about Claude agents, 
and ZenML is strategically focusing on workflows 
primarily for reliability considerations.

While we may eventually reach a point where we can 
trust LLMs to autonomously generate plans and itera-
tively work toward goals, current production systems 
demand the deterministic reliability that well-defined 
workflows provide. We envision a future where work-
flows remain the backbone of production AI systems, 
with agents serving as carefully constrained compo-

nents within a larger, more controlled process—com-
bining the creativity of agents with the predictability of 
structured workflows.

The industry is witnessing unprecedented investment 
in LLMOps and LLM-driven projects, with organizations 
actively experimenting to establish best practices as 
models rapidly evolve. The definitive trend is the urgent 
need for systems that deliver both innovation and 
enterprise-grade reliability—precisely the intersection 
where ZenML is leveraging its years of battle-tested 
MLOps experience to create transformative solutions 
for our customers.

Traditional MLOps focuses on feature engineering, 
model drift, and custom model training, while LLMOps 
deals with prompt engineering, context management, 
retrieval-augmented generation, subjective evaluation, 
and significantly higher inference costs.

Open-source frameworks need to evolve by providing:

Consistent interfaces across both paradigms

LLM-specific cost optimizations like caching and 
dynamic routing

Support for both traditional and LLM-specific evalua-
tion

First-class prompt versioning and governance

ZenML addresses these needs by extending our pipe-
line framework for LLM workflows while maintaining 
compatibility with traditional infrastructure. The most 
successful teams don't see MLOps and LLMOps as 
separate disciplines, but as points on a spectrum, using 
common infrastructure for both.
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Advice for Aspiring AI Engineers: Finally, what advice would you give to students 
and early-career professionals who are eager to dive into the world of 
open-source AI, MLOps and LLMOps, and what key skills should they focus on 
developing?

How does ZenML's approach to workflow orchestration differ from traditional ML 
pipelines when handling LLMs, and what specific challenges does it solve for teams 
implementing RAG or agent-based systems?

What patterns are you seeing emerge for successful hybrid systems that combine 
traditional ML models with LLMs, and how does ZenML support these architec-
tures?

We've implemented several high-impact community 
engagement initiatives that have yielded measurable 
results. Beyond actively soliciting and integrating 
open-source contributions for components and 
features, we hosted one of the first large-scale MLOps 
competitions in 2023, which attracted over 200 partic-
ipants and generated dozens of innovative solutions to 
real-world MLOps challenges.

We've established multiple channels for technical 
collaboration, including an active Slack community, 

regular contributor meetings, and comprehensive doc-
umentation with clear contribution guidelines. Our 
community members regularly discuss implementation 
challenges, share production-tested solutions, and 
contribute to expanding the ecosystem through inte-
grations and extensions. These strategic community 
initiatives have been instrumental in not only growing 
our user base substantially but also advancing the 
collective knowledge around MLOps and LLMOps best 
practices across the industry.

At ZenML, we believe workflow orchestration must be 
paired with robust evaluation systems—otherwise, 
teams are essentially flying blind. This is especially 
crucial for LLM workflows, where behaviour can be 
much less predictable than traditional ML models.

Our approach emphasizes "eval-first development" as 
the cornerstone of effective LLM orchestration. This 
means evaluation runs as quality gates or as part of the 
outer development loop, incorporating user feedback 
and annotations to continually improve the system.

For RAG or agent-based systems specifically, this 
eval-first approach helps teams identify whether issues 
are coming from retrieval components, prompt engi-
neering, or the foundation models themselves. ZenML's 
orchestration framework makes it straightforward to 
implement these evaluation checkpoints throughout 
your workflow, giving teams confidence that their 
systems are performing as expected before reaching 
production.

ZenML takes a deliberately unopinionated approach to 
architecture, allowing teams to implement patterns that 
work best for their specific use cases. Common hybrid 
patterns include RAG systems with custom-tuned 
embedding models and specialized language models 
for structured data extraction.

This hybrid approach—combining custom-trained 
models with foundation models—delivers superior 
results for domain-specific applications. ZenML sup-

ports these architectures by providing a consistent 
framework for orchestrating both traditional ML com-
ponents and LLM components within a unified work-
flow.

Our platform enables teams to experiment with differ-
ent hybrid architectures while maintaining governance 
and reproducibility across both paradigms, making the 
implementation and evaluation of these systems more 
manageable.

For those entering MLOps and LLMOps: 

Build complete systems, not just models—the challeng-
es of production offer the most valuable learning

Develop strong software engineering fundamentals

Contribute to open-source projects to gain exposure 
to real-world problems

Focus on data engineering—data quality issues cause 
more production failures than model problems

Learn cloud infrastructure basics–Key skills to develop 
include Python proficiency, containerization, distribut-
ed systems concepts, and monitoring tools. For bridg-
ing roles, focus on communication skills and product 
thinking. Cultivate "systems thinking"—understanding 
component interactions is often more valuable than 
deep expertise in any single area. Remember that the 
field is evolving rapidly. Being adaptable and committed 
to continuous learning is more important than master-
ing any particular tool or framework.

Published by Marktechpost AI Media, Inc 34

Open Source AI



As organizations rush to implement LLM solutions, how does ZenML help teams 
maintain the right balance between experimentation speed and production gover-
nance?

What are the key integration challenges enterprises face when incorporating foun-
dation models into existing systems, and how does ZenML's workflow approach 
address these?

ZenML handles best practices out of the box—tracking 
metadata, evaluations, and the code used to produce 
them without teams having to build this infrastructure 
themselves. This means governance doesn't come at 
the expense of experimentation speed.

As your needs grow, ZenML grows with you. You might 
start with local orchestration during early experimenta-
tion phases, then seamlessly transition to cloud-based 
orchestrators and scheduled workflows as you move 
toward production—all without changing your core 
code.

Lineage tracking is a key feature that's especially rele-
vant given emerging regulations like the EU AI Act. 
ZenML captures the relationships between data, 
models, and outputs, creating an audit trail that satis-
fies governance requirements while still allowing teams 
to move quickly. This balance between flexibility and 
governance helps prevent organizations from ending up 
with "shadow AI" systems built outside official channels.

A key integration challenge for enterprises is tracking 
which foundation model (and which version) was used 
for specific evaluations or production outputs. This 
lineage and governance tracking is critical both for 
regulatory compliance and for debugging issues that 
arise in production.

ZenML addresses this by maintaining a clear lineage 
between model versions, prompts, inputs, and outputs 
across your entire workflow. This provides both techni-
cal and non-technical stakeholders with visibility into 
how foundation models are being used within enter-
prise systems.

Our workflow approach also helps teams manage envi-
ronment consistency and version control as they move 
LLM applications from development to production. By 
containerizing workflows and tracking dependencies, 
ZenML reduces the "it works on my machine" problems 
that often plague complex integrations, ensuring that 
LLM applications behave consistently across environ-
ments.
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Anita has over 15 years of experience working at the 
intersection of hardware infrastructure and artificial 
intelligence. A mathematician and computer scientist 
by training, she currently serves as Director of Hardware 
Infrastructure Transformation at Microsoft, where she 
focuses on evolving Azure's cloud foundation to sup-
port next-generation AI workloads.

Her career to date has included leading Amazon's first 
non-chatbot generative AI product, and helping to 
establish Intel’s first discrete GPU business.

Anita specializes in hardware infrastructure and enter-
prise-scale AI solutions. Her expertise spans deep 
learning systems, technology strategy, AI governance 
and security, and AI systems design. Throughout her 
career, she has consistently translated cutting-edge 
technology into practical business solutions, with a 
focus on building secure and responsible AI systems 
that deliver tangible results.

The following interview presents my personal profes-
sional perspective on how open source software eco-
systems interact with and influence proprietary hard-
ware development in AI. Drawing from my experience 
across multiple roles in the industry, I explore the tech-
nical challenges, opportunities, and innovations that 
emerge when open collaboration meets closed hard-
ware design. These views are my own and do not 
represent the positions or policies of my current or 
previous employers. Our conversation examines how 
open source frameworks reshape proprietary silicon 
development, the technical misalignments between 
software and hardware lifecycles, and the future of 
specialized AI hardware in an increasingly open soft-
ware landscape.

 Anita  Lacea
About

Open Source & 
AI Hardware
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Open source has been transformative in my hardware 
and AI development journey, even though it has not 
been my primary focus. At Intel, working on the oneAPI 
inference kit showed me how an open standard could 
create a unified programming model that freed devel-
opers from proprietary ecosystems, allowing code to 
run efficiently across different architectures.

With the oneAPI AI reference kits, we observed measur-
able performance improvements and cost reductions 
across healthcare and manufacturing implementations 
that weren't achievable in closed environments. Hard-
ware innovation progresses more effectively when 

artificial barriers to collaboration are removed.

The most useful insight came from seeing how the 
community modified our reference implementations. 
Contributions to our PyTorch integration revealed 
applications we hadn't considered, which directly 
affected our hardware optimization strategies. This 
feedback between open source software development 
and hardware design continues to influence my 
approach to innovation  — I'm constantly looking for 
signals from the community that indicate where com-
puting workloads are evolving, which informs more 
resilient and future-proof hardware solutions.

1. How did open source shape your approach on your journey in AI 
and hardware?

Open source AI frameworks have democratized access 
to advanced AI capabilities, creating a foundation upon 
which both open and proprietary solutions can thrive. 
Libraries like TensorFlow, PyTorch, and Keras enable 
individuals to develop AI applications without sophisti-
cated hardware infrastructure upfront, while commer-
cial platforms build specialized optimizations on these 
foundations. This symbiotic relationship drives innova-
tion across the ecosystem—developers can build 
impressive models using consumer-grade GPUs or 
affordable cloud instances while still leveraging propri-
etary acceleration where it adds value.

The practical advantage comes from how open and 
proprietary solutions enhance each other through 
transparency and specialization. When core develop-
ment happens collaboratively, both hardware and soft-
ware solutions evolve more rapidly, with companies 
contributing optimizations that benefit their specific 
use cases. Nvidia's decision to open-source Run:ai, 

their GPU orchestration platform, exemplifies this 
synergy—organizations can optimize resource alloca-
tion while commercial hardware accelerators continue 
to push performance boundaries. Small companies 
benefit from these collaborative tools to develop appli-
cations that might not appear on larger organizations' 
roadmaps, while proprietary solutions provide turnkey 
capabilities for enterprise-scale deployment.

These frameworks provide abstraction layers that hide 
low-level complexity, allowing users to implement 
models without managing tensor operations or memory 
allocation. This creates a practical feedback loop for 
hardware development—as more people use AI tools, 
their usage patterns inform the development of spe-
cialized hardware for specific applications. This 
relationship between accessible software and respon-
sive hardware development continues to advance both 
fields.

The primary challenge is mismatched development 
cycles. Hardware development has long lead times from 
design to production, while open source AI frameworks 
change much more quickly. I've seen instances where AI 
accelerators were designed for workloads that had 
evolved significantly by the time silicon was ready. This 
temporal disconnect creates a perpetual game of 
prediction—you're always targeting a moving objective 
that accelerates with each community contribution.
Software optimization in the open source world has 
become effective at delivering performance gains that 
sometimes rival hardware improvements. DeepSeek 
R1's use of 8-bit floating point (FP8) precision instead of 
32-bit (FP32) reduces memory usage by 75% with min-

imal accuracy loss, enabling faster processing on stan-
dard hardware.

This creates a forecasting problem across the industry: 
predicting both future workloads and how software 
optimization might solve performance issues before 
new hardware is available. There's a risk of developing 
specialized accelerators that become less necessary 
due to software solutions implementing memory man-
agement or execution scheduling improvements. That 
being said, major technology companies are improving 
their forecasting strategies to minimize this risk.

Integration complexity is another issue. Hardware-

2. How are open source AI frameworks democratizing access to 
advanced hardware technologies?

specific features often require modifications to open 
source software, creating friction between hardware 
capabilities and software frameworks. Projects using 
different libraries that don't align with specialized hard-
ware create engineering challenges.

The most successful approaches I've seen embrace 
adaptability rather than perfect prediction. Hardware 

that provides flexible acceleration primitives rather 
than overly specialized functions tends to remain rele-
vant longer as open source workloads continue their 
rapid evolution. The key is developing hardware that 
accommodates the experimental nature of open 
source AI while still delivering meaningful performance 
improvements for established patterns.

3. What key challenges arise when merging open source software 
with specialized AI hardware, and how can they be overcome?
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The primary challenge is mismatched development 
cycles. Hardware development has long lead times from 
design to production, while open source AI frameworks 
change much more quickly. I've seen instances where AI 
accelerators were designed for workloads that had 
evolved significantly by the time silicon was ready. This 
temporal disconnect creates a perpetual game of 
prediction—you're always targeting a moving objective 
that accelerates with each community contribution.
Software optimization in the open source world has 
become effective at delivering performance gains that 
sometimes rival hardware improvements. DeepSeek 
R1's use of 8-bit floating point (FP8) precision instead of 
32-bit (FP32) reduces memory usage by 75% with min-

imal accuracy loss, enabling faster processing on stan-
dard hardware.

This creates a forecasting problem across the industry: 
predicting both future workloads and how software 
optimization might solve performance issues before 
new hardware is available. There's a risk of developing 
specialized accelerators that become less necessary 
due to software solutions implementing memory man-
agement or execution scheduling improvements. That 
being said, major technology companies are improving 
their forecasting strategies to minimize this risk.

Integration complexity is another issue. Hardware-

Open benchmarks and reference implementations 
allow early testing against actual workloads. Teams can 
identify performance issues and optimization opportu-
nities earlier in development—before finalizing silicon 
designs, when changes are less costly.

Analysis of open source usage reveals which operations 
are most common in popular frameworks. A study of 
GitHub repositories indicated TensorFlow is used 
primarily for image classification (32%), NLP (28%), and 
recommender systems (18%). While these specific 
percentages lack peer-reviewed validation, the direc-
tional insights are a data point for aligning accelerator 

designs with prevalent usage patterns. For production 
systems, this data can directly inform hardware archi-
tecture—leading to designs with 4-8x wider vector 
units optimized for these workloads' matrix operations. 
These insights drive decisions from memory hierarchy 
design to the balance between specialized and gener-
al-purpose processing elements. 

This results in a more efficient development process 
that produces hardware better aligned with actual 
requirements. Teams can build on established technical 
foundations rather than designing in isolation.

specific features often require modifications to open 
source software, creating friction between hardware 
capabilities and software frameworks. Projects using 
different libraries that don't align with specialized hard-
ware create engineering challenges.

The most successful approaches I've seen embrace 
adaptability rather than perfect prediction. Hardware 

that provides flexible acceleration primitives rather 
than overly specialized functions tends to remain rele-
vant longer as open source workloads continue their 
rapid evolution. The key is developing hardware that 
accommodates the experimental nature of open 
source AI while still delivering meaningful performance 
improvements for established patterns.

Open source tools provide practical methods for iden-
tifying and resolving performance bottlenecks in AI 
hardware by offering customizable platforms that allow 
developers to analyze hardware performance and opti-
mize workloads.

Take Triton and Azure MAIA 100 for example. Developed 
by OpenAI, Triton is an open-source programming 
language and compiler designed to simplify GPU opti-
mization for neural network operations, providing an 
accessible alternative to CUDA for high-performance 
GPU kernel development in AI workloads.

The integration of Triton with Microsoft's Azure MAIA 
100 AI chip, via the MAIA SDK, demonstrates how 
open-source optimization tools can complement 
proprietary hardware. This combination offers develop-
ers a flexible and efficient environment for AI model 

development while leveraging the performance bene-
fits of specialized accelerators. 

The open source ecosystem includes various perfor-
mance analysis tools. PyTorch Profiler, TensorBoard, and 
NVIDIA Nsight provide detailed information about hard-
ware utilization, memory issues, and computational 
efficiency.

In my experience working with enterprise AI deploy-
ments, these tools democratize hardware optimization. 
Teams without massive resources can now identify 
exactly where their AI systems struggle, whether it's 
memory bandwidth constraints, underutilized compute 
resources, or inefficient data movement patterns. 

Open source reduces uncertainty in hardware design. 
Standardized libraries, frameworks, and established 
usage patterns allow more accurate predictions about 
workload characteristics. This shared foundation is 

valuable when developing specialized hardware that 
needs to work effectively across different AI applica-
tions.

4. How do open source tools help identify and resolve 
performance bottlenecks in AI hardware systems?

While working on Intel's oneAPI and OpenVINO, I 
observed how community contributions expanded 
hardware compatibility. OpenVINO is an open source 
software suite that optimizes deep learning models 
across various hardware platforms.

Developers created new device plugins that extended 
OpenVINO to work with additional hardware, including 
ARM architectures and specialized accelerators. During 
Google Summer of Code projects, participants specifi-
cally focused on improving Generative AI performance 
on ARM devices—addressing latency and memory 
issues while expanding the hardware ecosystem sup-
ported by OpenVINO.

In another instance, Codeplay released an open-source 
layer enabling Intel’s oneAPI and SYCL/DPC++ to oper-
ate on NVIDIA GPUs via CUDA. 

This pattern of community-driven development 
becomes more important as AI hardware diversifies. 
Significant advances increasingly come from develop-
ers working across organizational boundaries, sharing 
optimizations and finding solutions to hardware con-
straints.

5. Can you share an instance where community contributions 
significantly accelerated an AI hardware breakthrough?

6. In what ways does open source simplify the design and 
development process for next-generation AI accelerators?
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Open benchmarks and reference implementations 
allow early testing against actual workloads. Teams can 
identify performance issues and optimization opportu-
nities earlier in development—before finalizing silicon 
designs, when changes are less costly.

Analysis of open source usage reveals which operations 
are most common in popular frameworks. A study of 
GitHub repositories indicated TensorFlow is used 
primarily for image classification (32%), NLP (28%), and 
recommender systems (18%). While these specific 
percentages lack peer-reviewed validation, the direc-
tional insights are a data point for aligning accelerator 

designs with prevalent usage patterns. For production 
systems, this data can directly inform hardware archi-
tecture—leading to designs with 4-8x wider vector 
units optimized for these workloads' matrix operations. 
These insights drive decisions from memory hierarchy 
design to the balance between specialized and gener-
al-purpose processing elements. 

This results in a more efficient development process 
that produces hardware better aligned with actual 
requirements. Teams can build on established technical 
foundations rather than designing in isolation.

Open source reduces uncertainty in hardware design. 
Standardized libraries, frameworks, and established 
usage patterns allow more accurate predictions about 
workload characteristics. This shared foundation is 

valuable when developing specialized hardware that 
needs to work effectively across different AI applica-
tions.

Several technical trends in open source are changing AI 
hardware development. There's a notable shift toward 
optimizing inference rather than training as the primary 
focus for hardware development. As models become 
more accessible through open source, competitive 
advantage comes from efficient deployment rather 
than proprietary training capabilities. Organizations find 
that optimizing production performance often provides 
more practical value than incremental training 
improvements.

Software techniques in the open source ecosystem are 
changing hardware requirements. Quantization, pruning, 
and model distillation improve performance without 
requiring proportional improvements in hardware spec-
ifications. Open compiler stacks like Triton and OpenX-
LA map AI workloads to different hardware targets, 
increasing flexibility and vendor choice. The field is 
moving toward compiler autotuning services that find 

optimal configurations across hardware types, and 
repositories of optimized models for different hard-
ware.

The community’s exploration of sparse computation 
and attention mechanisms will influence the next 
generation of hardware specialization. As these 
approaches become more common in open source 
models, we'll likely see accelerators designed specifi-
cally for operations like sparse matrix multiplication and 
key-value lookups, moving beyond the dense matrix 
operations that characterized previous hardware.

These developments point toward a future where hard-
ware and software co-evolve rapidly, with open source 
bridging research breakthroughs and production-ready 
solutions. The most successful innovations will emerge 
from teams that deeply understand both domains.

This requires constant balancing of competing priori-
ties. On the IP front, I've observed the need for more 
nuanced licensing models that protect innovation while 
enabling broader adoption. The data licensing challeng-
es we're seeing with models trained on scraped content 
highlight how our intellectual property frameworks 
haven't kept pace with technological capabilities. I favor 
content attribution practices, but I realize they are hard 
to implement.
 
Security concerns are equally complex. While not spe-
cific to open source, what worries me most is the 
potential for compounding errors when models are 
chained together in workflows, especially as we sprint 
towards deploying agentic AI. Small inaccuracies can 
cascade through systems in ways that become 
increasingly difficult to diagnose or correct, in turn 

breaking trust. My approach focuses on transparency in 
model development and comprehensive testing frame-
works that can identify potential vulnerabilities before 
deployment. One of the biggest lessons from my 
generative AI product launch at Amazon was the impor-
tance of red teaming and ensuring a fully secure and 
safe system before opening the flood gates in produc-
tion. You have to understand how what you are building 
works, down to its core, to understand the potential 
attack vectors.
 
The current paradigm is unsustainable—we need new 
approaches that recognize the unique characteristics 
of AI systems and support innovation while providing 
appropriate safeguards throughout the process, from 
data collection to user interaction.

7. Which emerging open source trends do you believe will most 
transform AI hardware innovation in the near future?

8. How do you navigate security and intellectual property 
challenges within the open source AI ecosystem?
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I view open source and proprietary approaches as 
complementary forces rather than competitors. Each 
serves a distinct purpose in advancing AI technology.
Open source frameworks accelerate development 
through collective effort. Collaboration among thou-
sands of developers produces algorithms and libraries 
more rapidly than any single organization could achieve. 
This prevents duplicated work and creates common 
foundations that benefit the entire field.

Proprietary hardware delivers the specialized integra-
tion needed for demanding workloads. When we design 
custom silicon, we gain precise control over perfor-

mance, efficiency, and security—unlocking capabilities 
that justify the substantial investment costs.

The key to success is maintaining clear boundaries. 
Core computational primitives and codecs benefit from 
open standards, while proprietary solutions should 
focus on areas of genuine differentiation. I've found this 
balanced approach accelerates testing cycles while 
enabling both ecosystem growth and competitive 
advantage.

9. How do you balance the benefits of proprietary solutions with 
the innovation driven by open source frameworks?

Focus on understanding actual workloads throughout 
hardware development. The common error I see is 
developing hardware based on theoretical expectations 
rather than observed behavior patterns or real techni-
cal problems. Startups should maintain direct connec-
tions with users and collect continuous feedback 
during development. In this rapidly changing field, it's 
difficult to predict which workloads will be relevant 
when hardware is ready for production, but under-

standing trends is essential to prevent your product 
being rendered obsolete at launch. 

Incorporate insights from the open source community 
into hardware development. This requires more than 
monitoring code repositories—it means understanding 
the technical constraints driving community develop-
ment decisions. These indicators often signal future 
trends that should inform architectural choices.

10. What advice would you offer to startups and developers eager 
to leverage open source AI in hardware applications?

The practical decentralization of AI is most interest-
ing—shifting from central services to capable local 
models without proprietary requirements. This resem-
bles the transition from mainframe computing to 
personal computers in the 1980s.

We're witnessing an unprecedented acceleration in 
open source model capabilities. Features that were 
exclusive to frontier AI labs just months ago are now 
accessible to individual developers.  This broader 
access is driving development of specialized hardware 
focused on efficient inference rather than large-scale 
training infrastructure.

The technical relationship forming between hardware 
and software is particularly noteworthy. As models 
become more accessible, we're seeing diversification in 
implementation scenarios—from edge devices to spe-

cialized accelerators—each optimized for specific 
functions. This creates market opportunities for spe-
cialized processing hardware that wouldn't have existed 
in a centralized model.

This hardware evolution driven by broader access will 
change the industry structure in the coming 18-24 
months. Organizations that understand and adapt to 
this shift will define the next phase of AI infrastructure.

11. What excites you most about the future of open source AI, and 
how do you see it evolving in the hardware domain?

Published by Marktechpost AI Media, Inc 41

Open Source AI



ACHIEVING CRITICAL 
RELIABILITY IN 
INSTRUCTION-
FOLLOWING WITH 
LLMS
How to Achieve AI Customer Service 
That’s 100% Reliable (Parlant)
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Yam Marcovitz

Published by Marktechpost AI Media, Inc 42

Open Source AI



Ensuring reliable instruction-following in LLMs remains 
a critical challenge. This is particularly important in 
customer-facing applications, where mistakes can be 
costly. Traditional prompt engineering techniques fail to 
deliver consistent results. A more structured and man-
aged approach is necessary to improve adherence to 
business rules while maintaining flexibility.

This article explores key innovations, including granular 
atomic guidelines, dynamic evaluation and filtering of 
instructions, and Attentive Reasoning Queries (ARQs), 
while acknowledging implementation limitations and 
trade-offs.

The Challenge: Inconsistent AI Performance in Custom-
er Service

LLMs are already providing tangible business value 
when used as assistants to human representatives in 
customer service scenarios. However, their reliability as 
autonomous customer-facing agents remains a chal-
lenge.

Traditional approaches to developing conversational 

LLM applications often fail in real-world use cases. The 
two most common approaches are:

1.Iterative prompt engineering, which leads to 
inconsistent, unpredictable behavior.

2.Flowchart-based processing, which sacrifices 
the real magic of LLM-powered interactions: dynamic, 
free-flowing, human-like interactions.

In high-stakes customer-facing applications, such as 
banking, even minor errors can have serious conse-
quences. For instance, an incorrectly executed API call 
(like transferring money) can lead to lawsuits and repu-
tational damage. Conversely, mechanical interactions 
that lack naturalness and rapport hurt customer trust 
and engagement, limiting containment rates (cases 
resolved without human intervention).

For LLMs to reach their full potential as dynamic, auton-
omous agents in real-world cases, we must make them 
follow business-specific instructions consistently and 
at scale, while maintaining the flexibility of natural, 
free-flowing interactions.

2. Instructions should be respected 
consistently. This is hard to do with LLMs, which are 
inherently unpredictable creatures. An innovative solu-
tion was required.

3. Agent decisions should be transparent. The 
spectrum of possible issues related to natural language 

and behavior is too wide. Resolving issues in instruc-
tion-following without clear indications of how an agent 
interpreted our instructions in a given scenario would 
be highly impractical in production environments with 
deadlines.

To address these gaps in LLMs and current approaches, 
and achieve a level of reliability and control that works 
well in real-world cases, we must question the 
approaches that failed. 

One of the first questions I had when I started working 
on Parlant (an open-source framework for custom-
er-facing AI agents) was, “If an AI agent is found to 
mishandle a particular customer scenario, what would 
be the optimal process for fixing it?” Adding additional 
demands to an already-lengthy prompt, like “Here’s 
how you should approach scenario X…” would quickly 
become complicated to manage, and the results 
weren’t consistent anyhow. Besides that, adding those 
instructions unconditionally posed an alignment risk 
since LLMs are inherently biased by their input. It was 
therefore important that instructions for scenario X did 
not leak into other scenarios which potentially required 
a different approach.

We thus realized that instructions needed to apply only 
in their intended context. This made sense because, in 
real-life, when we catch unsatisfactory behavior in 
real-time in a customer-service interaction, we usually 
know how to correct it: We’re able to specify both what 
needs to improve as well as the context in which our 
feedback should apply. For example, “Be concise and to 
the point when discussing premium-plan benefits,” but 
“Be willing to explain our offering at length when com-
paring it to other solutions.”

In addition to this contextualization of instructions, in 
training a highly capable agent that can handle many 
use cases, we’d clearly need to tweak many instruc-
tions over time as we shaped our agent’s behavior to 
business needs and preferences. We needed a system-
atic approach.

Stepping back and rethinking, from first principles, our 
ideal expectations from modern AI-based interactions 
and how to develop them, this is what we understood 
about how such interactions should feel to customers:

1. Empathetic and coherent: Customers should feel 
in good hands when using AI.

2. Fluid, like Instant Messaging (IM): 
Allowing customers to switch topics back and forth, 
express themselves using multiple messages, and ask 
about multiple topics at a time.

3. Personalized: You should feel that the AI 
agent knows it’s speaking to you and understands your 
context.

From a developer perspective, we also realized that:

1. Crafting the right conversational UX is an 
evolutionary process. We should be able to confi-
dently modify agent behavior in different contexts, 
quickly and easily, without worrying about breaking 
existing behavior.

Introduction

How to Create a Reliable, Autonomous Customer Service Agent 
with LLMs
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2. Instructions should be respected 
consistently. This is hard to do with LLMs, which are 
inherently unpredictable creatures. An innovative solu-
tion was required.

3. Agent decisions should be transparent. The 
spectrum of possible issues related to natural language 

and behavior is too wide. Resolving issues in instruc-
tion-following without clear indications of how an agent 
interpreted our instructions in a given scenario would 
be highly impractical in production environments with 
deadlines.

Our main challenge was how to control and adjust an AI 
agent’s behavior while ensuring that instructions are not 
spoken in vain—that the AI agent implements them 
accurately and consistently. This led to a strategic 
design decision: granular, atomic guidelines.

1. Granular Atomic Guidelines

Complex prompts often overwhelm LLMs, leading to 
incomplete or inconsistent outputs with respect to the 
instructions they specify. We solved this in Parlant by 
dropping broad prompts for self-contained, atomic 
guidelines. Each guideline consists of:

Condition: A natural-language query that determines 
when the instruction should apply (e.g., "The customer 
inquires about a refund...")

Action: The specific instruction the LLM should follow 
(e.g., "Confirm order details and offer an overview of the 
refund process.")

By segmenting instructions into manageable units and 
systematically focusing their attention on each one at a 
time, we could get the LLM to evaluate and enforce 
them with higher accuracy.

2. Filtering and Supervision Mechanism

LLMs are highly influenced by the content of their 
prompts, even if parts of the prompt are not directly 
relevant to the conversation at hand.

Instead of presenting all guidelines at once, we made 
Parlant dynamically match and apply only the relevant 
set of instructions at each step of the conversation. 
This real-time matching can then be leveraged for:

Reduced cognitive overload for the LLM: We’d 
avoid prompt leaks and increase the model’s focus on 
the right instructions, leading to higher consistency. 

Supervision: We added a mechanism to highlight 
each guideline’s impact and enforce its application, 
increasing conformance across the board.

Explainability: Every evaluation and decision generat-
ed by the system includes a rationale detailing how 
guidelines were interpreted and the reasoning behind 
skipping or activating them at each point in the conver-
sation.

Continuous improvement: By monitoring guideline 
effectiveness and agent interpretation, developers 
could easily refine their AI’s behavior over time. 
Because guidelines are atomic and supervised, you 
could easily make structured changes without breaking 
fragile prompts. 

3. Attentive Reasoning Queries (ARQs)

While "Chain of Thought" (CoT) prompting improves 
reasoning, it remains limited in its ability to maintain 
consistent, context-sensitive responses over time. 
Parlant introduces Attentive Reasoning Queries 
(ARQs)—a technique we’ve devised to ensure that 
multi-step reasoning stays effective, accurate, and 
predictable, even across thousands of runs. You can 
find our research paper on ARQs vs. CoT on parlant.io 
and arxiv.org.

ARQs work by directing the LLM’s attention back to 
high-priority instructions at key points in the response 
generation process, getting the LLM to attend to those 
instructions and reason about them right before it 
needs to apply them. We found that “localizing” the 
reasoning around the part of the response where a spe-
cific instruction needs to be applied provided signifi-
cantly greater accuracy and consistency than a prelim-
inary, nonspecific reasoning process like CoT.

While these innovations improve instruction-following, 
there are challenges to consider:

Computational overhead: Implementing filtering 
and reasoning mechanisms increases processing time. 
However, with hardware and LLMs improving by the day, 
we saw this as a possibly controversial, yet strategic 

design choice.

Alternative approaches: In some low-risk applica-
tions, such as assistive AI co-pilots, simpler methods 
like prompt-tuning or workflow-based approaches 
often suffice.

To address these gaps in LLMs and current approaches, 
and achieve a level of reliability and control that works 
well in real-world cases, we must question the 
approaches that failed. 

One of the first questions I had when I started working 
on Parlant (an open-source framework for custom-
er-facing AI agents) was, “If an AI agent is found to 
mishandle a particular customer scenario, what would 
be the optimal process for fixing it?” Adding additional 
demands to an already-lengthy prompt, like “Here’s 
how you should approach scenario X…” would quickly 
become complicated to manage, and the results 
weren’t consistent anyhow. Besides that, adding those 
instructions unconditionally posed an alignment risk 
since LLMs are inherently biased by their input. It was 
therefore important that instructions for scenario X did 
not leak into other scenarios which potentially required 
a different approach.

We thus realized that instructions needed to apply only 
in their intended context. This made sense because, in 
real-life, when we catch unsatisfactory behavior in 
real-time in a customer-service interaction, we usually 
know how to correct it: We’re able to specify both what 
needs to improve as well as the context in which our 
feedback should apply. For example, “Be concise and to 
the point when discussing premium-plan benefits,” but 
“Be willing to explain our offering at length when com-
paring it to other solutions.”

In addition to this contextualization of instructions, in 
training a highly capable agent that can handle many 
use cases, we’d clearly need to tweak many instruc-
tions over time as we shaped our agent’s behavior to 
business needs and preferences. We needed a system-
atic approach.

Stepping back and rethinking, from first principles, our 
ideal expectations from modern AI-based interactions 
and how to develop them, this is what we understood 
about how such interactions should feel to customers:

1. Empathetic and coherent: Customers should feel 
in good hands when using AI.

2. Fluid, like Instant Messaging (IM): 
Allowing customers to switch topics back and forth, 
express themselves using multiple messages, and ask 
about multiple topics at a time.

3. Personalized: You should feel that the AI 
agent knows it’s speaking to you and understands your 
context.

From a developer perspective, we also realized that:

1. Crafting the right conversational UX is an 
evolutionary process. We should be able to confi-
dently modify agent behavior in different contexts, 
quickly and easily, without worrying about breaking 
existing behavior.

Implementing Parlant’s Design Goals

Acknowledging Limitations
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In regulated industries like finance, healthcare, and legal 
services, even 99% accuracy poses significant risk. A 
bank handling millions of monthly conversations cannot 
afford thousands of potentially critical errors. Beyond 
accuracy, AI systems must be constrained such that 
errors, even when they occur, remain within strict, 
acceptable bounds.

In response to the demand for greater accuracy in such 
applications, AI solution vendors often argue that 
humans also make mistakes. While this is true, the 
difference is that, with human employees, correcting 
them is usually straightforward. You can ask them why 

they handled a situation the way they did. You can 
provide direct feedback and monitor their results. But 
relying on “best-effort” prompt-engineering, while 
being blind to why an AI agent even made some deci-
sion in the first place, is an approach that simply 
doesn’t scale beyond basic demos.

This is why a structured feedback mechanism is so 
important. It allows you to pinpoint what changes need 
to be made, and how to make them while keeping exist-
ing functionality intact. It’s this realization that put us on 
the right track with Parlant early on.

For enterprises to deploy AI at scale, consistency and 
transparency are non-negotiable. A financial chatbot 
providing unauthorized advice, a healthcare assistant 
misguiding patients, or an e-commerce agent misrep-
resenting products can all have severe consequences.
Parlant redefines AI alignment by enabling:

Enhanced operational efficiency: Reducing human 
intervention while ensuring high-quality AI interactions.

Consistent brand alignment: Maintaining coher-
ence with business values.

Regulatory compliance: Adhering to industry stan-
dards and legal requirements.

This methodology represents a shift in how AI alignment 
is approached in the first place. Using modular guide-
lines with intelligent filtering instead of long, complex 
prompts; adding explicit supervision and validation 
mechanisms to ensure things go as planned—these 
innovations mark a new standard for achieving reliability 
with LLMs. As AI-driven automation continues to 
expand in adoption, ensuring consistent instruc-
tion-following will become an accepted necessity, not 
an innovative luxury.

If your company is looking to deploy robust AI-powered 
customer service or any other customer-facing appli-
cation, you should look into Parlant, an agent framework 
for controlled, explainable, and enterprise-ready AI 
interactions.

Why Consistency Is Crucial for Enterprise-Grade Conver-
sational AI

Handling Millions of Customer 
Interactions with Autonomous AI 
Agents

An experienced software builder with extensive 
experience in mission-critical software and system 

architecture, Yam understands what it takes to 
create reliable, production-ready software. This 

background informs his distinctive approach to the 
development of predictable and aligned AI systems

Author

Yam Marcovitz
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FROM VISION TO 
GENERATIVE AI: 

An Inside Look at Intel OpenVINO with Ravi Panchumarthy 
and Helena Kloosterman (AI Frameworks Engineers at Intel)

Bios

As an AI Frameworks Engineer at Intel, Helena enables 
organizations to unlock the potential of AI by leveraging 
OpenVINO, Intel's AI inference runtime. She focuses on 
making AI accessible by enhancing developer experi-
ences and integrating OpenVINO with popular ecosys-
tems like Hugging Face. With a background in mathe-
matics, Helena is passionate about empowering devel-
opers to easily deploy high-performance AI models on 
Intel hardware (CPUs, GPUs and NPU). Based in the 
Netherlands, she works to bridge the gap between 
complex AI technologies and practical applications.

 

Ravi is an AI Frameworks Engineer at Intel, where he 
collaborates closely with Intel's customers and part-
ners, providing technical guidance and support to build, 
optimize, and deploy AI solutions on Intel architectures. 
He specializes in integrating tools like OpenVINO to 
accelerate AI inference, delivering significant perfor-
mance and efficiency gains across diverse sectors.  He 
holds a PhD in computer science and engineering from 
the University of South Florida with a dissertation 
focused on developing novel non-boolean computing 
techniques for computer vision applications using 
nanomagnetic field-based computing. He holds two 
patents and several peer-reviewed publications in 
journals and conferences. In his free time, he enjoys 
traveling and hiking.

Ravi Panchumarthy Helena Kloosterman
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The Intel Distribution of OpenVINO toolkit started as a 
toolkit focused on optimizing computer vision models 
for Intel CPUs, but it has since evolved into a compre-
hensive AI inference framework supporting a wide array 
of deep learning tasks, including generative AI and 
LLMs. The core transformation started when this proj-
ect was made open-source in 2019, opening communi-
ty collaboration and significantly expanding our user 
base. Later, supporting a wide range of hardware (GPUs, 
NPUs, FPGAs), integrating frameworks like PyTorch, 
TensorFlow, ONNX, etc and the most recent evolution 

How has OpenVINO evolved since its inception, and what core changes have 
driven its transformation in the open source AI landscape? 

has been our investment in LLM and generative AI sup-
port. Through key projects like NNCF (Neural Network 
Compression Framework), OpenVINO Model Server, 
along with strategic integrations like Hugging Face Opti-
mum Intel, torch.compile, LangChain, Ultralytics, Keras 
3, vLLM, etc., OpenVINO has continually expanded its 
capabilities and reach. Throughout this evolution, our 
vision has remained consistent - to democratize AI 
deployment by providing optimized inference capabili-
ties that work seamlessly across hardware platforms. 

1. Evolution and Vision: 

OpenVINO’s design philosophy for heterogeneous 
deployment are based on abstraction and modularity. 
By decoupling model representation from hardware 
specifics via plugins (e.g., GPU plugin), OpenVINO 
provides a unified API allowing developers to write 
inference code once and deploy it across different 
hardware platforms without rewriting it for each plat-
form. OpenVINO’s  hardware-agnostic intermediate 
representation (IR) serves as a common language that 
all supported hardware can understand. Underneath, 
the hardware-specific plugins translate the IR into opti-
mized code for each target device, whether CPU, GPU, 
NPU, or FPGA. This philosophy ensures seamless scaling 
from legacy systems to cutting-edge accelerators 
without code changes. 

OpenVINO supports inference across CPUs, GPUs, NPUs, and even FPGAs. Can 
you share insights on the design philosophy that enables such seamless 
deployment on heterogeneous hardware? 

2. Heterogeneous Deployment:  
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OpenVINO uses several sophisticated optimization 
techniques to enhance inference performance. Graph 
Optimization, Quantization, Weight Compression, and 
Hardware-Specific Optimizations work together to 
minimize latency and memory footprint, ensuring that 
even complex models run smoothly on resource-con-
strained hardware. The most basic optimizations 
include fusing of operations and dropping of nodes that 
are not needed for inference. A further optimization is 
quantization. For LLMs we use weight compression, 

What are some of the key optimization techniques in OpenVINO that help 
reduce latency and model footprint while maintaining accuracy? 

where only weights get quantizations, but activations 
remain in their original precision. For most models we 
see no accuracy impact when reducing precision from 
FP32 to INT8, and even INT4 works pretty well. For other 
models we support full quantization through NNCF. 
There are also optimizations on a hardware level that 
are leveraged by OpenVINO such as AVX512, AMX. 
OpenVINO automatically enables 16 bit floating point 
precision if the hardware supports it, for example Intel® 
Xeon® Processors and Intel® Arc™ Graphics  

3. Performance Optimization: 

The largest enhancement is in developer experience.  In 
traditional AI models, inference involves providing a 
model input and receiving output in return. However, 
with generative AI, the process is more complex. The 
output is generated in multiple steps, and there are 
many settings to optimize these steps. For example, 
you can set the temperature to influence the kind of 

Recent updates have added support for large language models and generative 
AI. How do these enhancements extend the toolkit’s capabilities and impact 
real-world applications? 

output the model generates. Writing code to do this is 
not straightforward, and OpenVINO GenAI hides this 
complexity from the developer, so they can focus on 
developing their applications, without having to know 
how to implement advanced generative AI inferencing 
strategies themselves, not only for Python, but also for 
C++ applications. 

4. Generative AI and LLMs:  

Yes, indeed it is a challenge, but at Intel® , a communi-
ty-first mindset paired with technical rigor makes it a 
possibility. We actively listen to developers through 
forums, GitHub discussions, and work closely with part-
ners and customers, incorporating their feedback into 
our roadmap. This ensures OpenVINO addresses real 
user needs.  Our detailed documentation and contribu-
tion guidelines along with mentorship programs like 

Balancing cutting-edge performance with open source accessibility is no small 
feat. How does Intel ensure that OpenVINO remains both highly performant and 
community friendly? 

Google Summer of Code (GSoC) and Good First Issues 
in GitHub encourage developers to contribute and 
improve the toolkit. OpenVINO invested in a robust 
continuous integration system that tests performance 
across diverse hardware configurations, ensuring opti-
mizations through contributions deliver expected 
performance while maintaining the openness. 
 

5. Open Source Commitment:   
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As AI moves increasingly to the edge, how does OpenVINO support deployment 
on resource-constrained devices, and what challenges do you face when opti-
mizing for both edge and cloud environments?  

Write once build anywhere – no need to rewrite your 
code when you switch to different devices. Build on 
your laptop, and the same application works seamlessly 
in the cloud.  

An API for asynchronous inference for optimizing 
throughput. Async is often tricky to implement, and we 
abstract away the trickiness 

OpenVINO GenAI makes it very easy to develop proto-
type generative AI applications with only a few lines of 
code, in either C++ or Python. 

A big challenge for production level AI applications is 
the ecosystem. Python deployment can be challenging, 

especially when you want to support a wide variety of 
systems. One challenge is that many Python applica-
tions have a lot of dependencies on other libraries; and 
this is a fast moving field where things often break. 
OpenVINO addresses this in two ways:

 C++ and Python APIs from OpenVINO are simi-
lar, making it easy to convert a Python prototype into a 
C++ application. 

 For Python, OpenVINO has very few dependen-
cies. Numpy is the only required external dependency. 
This reduces the risk of deployment issues and securi-
ty vulnerabilities during the application's lifecycle. 
 

OpenVINO GenAI and LLM support was much 
improved. More features for text generation, faster 
audio models (Whisper), and this release added sup-
port for several popular visual language models, image 
generation models, multimodal,  and reasoning models. 

NPU improvements are amazing. Inference speed is now 
faster, models load faster, and more features are sup-
ported on NPU (for example sample search for LLMs, 
GenAI API support of LLMs on NPUs). These improve-
ments are thanks to improvements on OpenVINO level 
and NPU driver level.

OpenVINO is lightweight and flexible. You can for exam-
ple compile a custom version of OpenVINO that only 
contains support for a particular model and the device 
that you are deploying on. Model Quantization and 
Compression will further minimize memory and power 
usage, critical for edge devices. OpenVINO heteroge-
neous hardware support maximizes performance on 
Intel edge hardware by leveraging integrated GPUs and 
NPUs. The challenge with optimizing between edge and 
cloud is often more at an application level. On the client, 
most applications are single user; in the cloud, a 
multi-user server application is often expected. Edge 
devices have limited memory, power, and compute, 

requiring smaller models and inference runtime, but in 
contrast, cloud setups prioritize scalability and 
throughput, demanding different strategies. To achieve 
consistent optimized performance across diverse plat-
forms - from resource-constrained edge chips to pow-
erful cloud servers, OpenVINO provides a unified API 
and runtime that abstracts the underlying hardware 
differences, optimizing for each platform’s strengths. 
This allows developers to deploy applications seam-
lessly from edge to cloud without extensive code modi-
fications. 
 

6. Edge and Cloud Synergy:  

OpenVINO is praised for its ability to accelerate development cycles. What 
strategies or tools does the toolkit offer to help developers quickly prototype 
and then seamlessly transition their applications to production?   

7. Prototyping to Production: 

With the 2025.0 release, what new features or enhancements are you most 
excited about, and how do they further advance the performance or usability 
of OpenVINO?   

8. Latest Release Highlights: 
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Animesh Singh is the Director of AI and ML Platforms 
at LinkedIn, where he is spearheading the develop-
ment of the next-generation AI platform. This plat-
form is designed to create foundational AI models 
that cater to the needs of over 1 billion members. 
Animesh is focused on building and scaling various AI 
technologies, including distributed training, ma-
chine learning pipelines, generative AI, LLMs, GNNs, 
and incremental and online learning

Before joining LinkedIn, Animesh was a distinguished 
engineer, CTO, and senior director at IBM Watson AI 
and Data Open Tech. He also served as the LFAI 
Trusted AI NA Chair and co-founded Kubeflow.

ANIMESH 
SINGH 

Director of AI & ML 
Platforms at
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In 2011, I was at IBM when their Watson DeepQA com-
puter made history by defeating two of Jeopardy's 
all-time champions. That was the beginning of my 
interest in AI. 

After leading several initiatives around training and 
inferencing in IBM’s Watson group, I joined LinkedIn 
where AI-powered initiatives are driving a significant 
amount of the daily engagements on our professional 
network. I have been leading LinkedIn’s massive AI Infra-
structure expansion, which has included increasing our 
GPU footprint by more than 100X in FLOPS and training 
models that are 180X bigger than ones we’ve managed 
just a few years ago.

Regarding OpenSource, I have been a firm believer since 
the early days of my career that the power of the 
OpenSource community is immense, and it's hard for 
proprietary software to have the same quality and 
functionality maintained over an extended period of 

time. Additionally, the diverse set of people coming 
together, debating, and building software in open 
source creates something magical. We have seen this 
play out with Linux, Kubernetes, PyTorch, and now with 
AI models like Llama and others.

The next frontier of innovation is the AI infrastructure 
and accelerator space. A few years ago, I cofounded a 
project in OpenSource called KServe for serverless 
model inference, which included joining hands with 
companies like Bloomberg, Google, RedHat, and Nvidia. 
It’s one of the leading platforms in OSS for Model Infer-
encing on Kubernetes.

Liger was the next natural journey in that space - going 
onto the GPU layer itself and optimizing models directly 
from inside GPU Kernels.

Liger Kernels, based on Triton, originated from LinkedIn’s 
internal needs when we were training some heavy foun-
dation models and teams were competing for GPU 
horsepower. We were also up against some restrictive 
time-bound goals to complete the training for different 
projects. When considering how to address these 
needs, we decided our primary goal was to improve 
performance - achieving massive throughput gains, 
while using lesser memory - for both training and infer-

encing, which brought us to our Liger project. Once 
launched, we got a great reception for Liger in the open 
source community, catching the attention of industry 
veterans like Andrej Karpathy and Jeremy Howard. 

Internally, Liger Kernel improved our 70B model training 
speed by 3X. We've also added optimized Post-Training 
kernels that deliver up to 80% memory savings for 
alignment and distillation tasks.

1. Career & Motivation: Could you share a bit about your journey into AI 
and open source, and what initially inspired you to lead initiatives like 
Liger-Kernel?

2. Project Genesis: What was the driving vision behind the creation of 
Liger-Kernel, and how do you see it fitting into the broader ecosystem of 
AI platforms and infrastructure?

Animesh Singh’s 
Journey

In Their Own Words: 
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We partnered with the OSS community and have inte-
grated with mainstream training frameworks, including 
Axolotl, LLaMa-Factory, SFTTrainer, Hugging Face Train-
er, SWIFT. We’ve also supported distributed training 
frameworks such as PyTorch FSDP and Microsoft Deep-
Speed. 

We’ve also seen dynamic adoption from the industry 
itself, with many companies integrating Liger Kernels 
organically, like Anyscale and Glows.ai. Within the first 
few months, we have seen 1M+ downloads of these 
Kernels, with many contributors and pull requests 
coming from the industry.

Expanding on this, with our open source strategy we 
aim to: 

Create a leading open-source Kernels library ecosys-
tem for machine learning

Leverage the power of open source to scale the kernels 
to handle a permutation of X Kernels, Y Models, with M 
frameworks, and H/W accelerators 

Extend to non LLM use cases, by collaboration with 
OSS. Additionally invest in CUDA, Cutlass, Triton, PTL 
based Kernels modifications

Our goal is to make Liger Kernel the most efficient ML 
Kernels at runtime for both training and post-training 
use cases.

This balance is something we care about a lot. Our 
primary job is to deliver the best AI infrastructure and 
platform for LinkedIn, and as far as possible build on the 
latest and greatest open source technologies. Picking 
up projects depends on different dimensions. Some-
times it's performance at scale which dominates the 
decision making, and on other dimensions it's the AI 
developer's intuitiveness.

The culture in the team is set to be a net contributor, 
not just a consumer of OpenSource. That's how you 
build better products, and that's how OpenSource gets 
better. We are always finding opportunities to contrib-
ute back any internal extensions to OpenSource we 
consume (Horovod, Tensorflow, PyTorch, Flyte, etc.), 
while ensuring we are remaining true to our primary job 
of creating the best AI Infrastructure for LinkedIn.

3. Community Collaboration: Open source thrives on community involve-
ment. Could you discuss how community contributions have shaped the 
evolution of Liger-Kernel and what role collaboration plays in your strategic 
vision?

4. Balancing Priorities: How do you navigate the balance between main-
taining robust, enterprise-grade infrastructure and staying true to the open 
source ethos? 

We have ambitious goals both on our AI modeling strat-
egy and AI infrastructure buildout, but balancing it with 
pragmatic spending on AI infrastructure keeps the 
culture of innovation active. Scarcity is the mother of 
invention, so ensuring we have enough spend to con-
tribute towards business goals, but having a tighter 
control around spending ensures we do get to innovate 
and create projects like Liger and others. 

Additionally, LinkedIn is very vigilant about duplication. 
We don't have multiple pockets of AI infrastructure 
within LinkedIn, but instead we have centralized on a 

company wide GPU fleet, a central training infrastruc-
ture, and consolidating our AI serving in a central place 
as well. This sets a strong standardization across the 
company, and makes it easier to monitor and control 
capacity decisions.

And definitely building on standardized open source 
software which is proven in industry at scale, helps us 
hire the right talent, which is coming with pre existing 
skills in the stack. 

5. Competitive Landscape: In a landscape crowded with proprietary AI 
solutions, what sets LinkedIn’s approach to AI infrastructure apart from 
other tech giants?
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With the pace at which AI is growing, it is hard to make 
very long-term projections, but let's take a 5 year lens. 
There are a few things I can see:

Purpose-fit AI accelerators will become a norm: the 
fungibility argument (same GPUs across different work-
loads like raining and inferencing), and different model 
types will play out in the next couple of years. Beyond 
that, the cost of fungibility will become too high for 
most companies, and purpose-fit AI accelerators for 
training and inferencing, use cases like heavy encoder/-
decoder instances, and model architectures (e.g. 
Transformer/LLMs), will be seriously invested in 
because of the ballooning cost.

Power demands will drive innovation: Even if compa-
nies have deep coffers to buy the most expensive AI 
accelerators, surging power demands, and the pace at 
which new AI datacenters will need to be built will spur 
innovation in the space to look beyond the current 
power hungry AI workloads, which cannot be sustained 
at this pace.

Post training and inferencing on GPUs across Data-
centers: The inference landscape across the industry 
is dominated by CPUs. Current model architectures, 

and upcoming ones cannot be served through them. 
Additionally, post training techniques (e.g. distillation, 
fine tuning, alignment, pruning) have created another 
class of workloads which are GPU hungry, so there will 
be new spend on AI infrastructure in these areas.

Agentic architectures mean more reasoning capa-
bilities pushed down in the models to pick the right 
tools and take the right actions: So inference-time 
reasoning cost will balloon, and a huge class of Infer-
ence workloads will need to relax latency requirements, 
to get more deterministic, well-reasoned outputs. 

Accelerator resident storage for AI workloads is a 
huge opportunity: More and more workloads are 
demanding storage as close as possible to the GPU 
compute to ensure we are not paying the network and 
latency cost of bringing data to GPUs. And the capacity 
needed for GPU resident storage (network/disk) is 
increasing. Both in AI accelerator design, and at the 
software layer, this would have been solved compre-
hensively.

6. Future of AI Infrastructure: As the demands on AI platforms evolve, 
where do you see the greatest opportunities—and challenges—in infra-
structure innovation over the next 5 to 10 years?
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At technology conferences worldwide and on social 
media, generative AI applications demonstrate impres-
sive capabilities: composing marketing emails, creating 
data visualizations, or writing functioning code. Yet 
behind these polished demonstrations lies a stark reali-
ty. What works in controlled environments often fails 
when confronted with the demands of production 
systems.

Industry surveys reveal the scale of this challenge: 68% 
of organizations have moved 30% or fewer of their 
generative AI experiments into production, while only 
53% of AI projects overall progress from prototype to 
production - with a mere 10% achieving measurable ROI 
(Wallaroo). Why does this gap persist? The controlled 
environment of a demonstration bears little resem-
blance to the unpredictable demands of real-world 
deployment.

Most current GenAI applications rely on what some 
have called 'vibes-based' assessments rather than 
rigorous validation. A developer reviews the output, 
determines it looks reasonable, and the system 
advances to the next stage of development. While this 
approach might sometimes identify obvious flaws, it 

fails to detect subtle inconsistencies that emerge only 
at scale or with edge-case inputs.

These reliability concerns become critical when AI 
systems influence business decisions with tangible 
consequences. 70% of organizations estimate needing 
at least 12 months to resolve challenges in achieving 
expected ROI from GenAI, highlighting the high stakes 
of production failures. Each misstep carries measurable 
costs: an incorrect product recommendation affects 
not just immediate sales but customer retention; an 
inaccurate financial summary might lead to misalloca-
tion of resources; a flawed legal interpretation could 
create significant liability exposure.

The transition from promising demonstrations to 
dependable production systems requires more than 
incremental improvements. It demands a fundamental 
shift in how we architect and evaluate GenAI applica-
tions. Structured workflows and systematic evaluation 
offer a methodical path forward—one that transforms 
unpredictable prototypes into systems worthy of trust 
with consequential decisions.

From GenAI Demos 

to Production: 

By Alex Strick van Linschoten

Why Structured 
Workflows 

are Essential
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Most first-generation GenAI applications employ a 
deceptively simple architecture: user input enters the 
system, a language model processes it with some con-
textual information, and the system produces a 

response. This end-to-end approach, while straightfor-
ward to implement, introduces significant limitations 
when deployed beyond controlled environments.

The Limitations Of Monolithic Genai Applications

The most pressing challenge involves identifying the 
source of errors. When a monolithic system produces 
incorrect, biased, or nonsensical output, determining 
the cause becomes an exercise in speculation. Did the 
retrieval mechanism provide irrelevant context? Was 
the prompt construction flawed? Does the base model 
lack necessary capabilities? Without visibility into 
these components, improvement efforts resemble 
guesswork rather than engineering. Choco, a food 
distribution platform, discovered this when their single 
"catch-all" prompt worked in a hackathon but proved 
"not scalable or maintainable" in production.

Language models introduce another complication 
through their probabilistic nature. Even with identical 
inputs, these models may generate different outputs 
across successive executions. This variability creates a 
fundamental tension: creative applications benefit from 
diverse outputs, but business processes require con-
sistency. The legal field saw an infamous example when 
an attorney unknowingly submitted hallucinated court 
cases from ChatGPT, leading to sanctions. The lack of 
internal measurement points further hampers improve-
ment efforts. Without defined evaluation boundaries, 
teams struggle to isolate performance issues or quanti-
fy improvements.

Many current frameworks exacerbate these problems 
through premature abstraction. They encapsulate 
functionality behind interfaces that obscure necessary 
details, creating convenience at the expense of visibility 
and control. A team at Prosus found that off-the-shelf 
agent frameworks were fine for prototyping but too 
inflexible for production at scale.

These limitations become most apparent as organiza-
tions scale from prototype to production. Approaches 
that function adequately in limited tests falter when 
confronted with the volume, variety, and velocity of 
real-world data. Production deployment requires archi-
tectures that support not just initial development but 
ongoing operation, monitoring, and improve-
ment—needs that monolithic systems struggle to satis-
fy. Successful teams have responded by breaking 
monolithic designs into modular pipelines, taming 
randomness with deterministic components, building 
comprehensive evaluation infrastructure, and favoring 
transparent architectures over premature abstractions.
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The transition to component-driven architecture 
represents more than a technical preference—it applies 
fundamental software engineering principles to gener-
ative AI development. By decomposing monolithic 
systems into discrete functional units, this approach 
transforms opaque black boxes into transparent, man-
ageable workflows.

Component-based architecture divides complex 
systems into units with specific responsibilities, con-
nected through well-defined interfaces. In GenAI appli-
cations, these components might include:

Data Retrieval Component: A vector database with 
embedding search that finds relevant documents or 
knowledge snippets based on user queries (e.g., Pine-
cone or Weaviate storing product information).

Prompt Construction Component: A template engine 
that formats retrieved information and user input into 
optimized prompts (e.g., a system that assembles 
query context).

Model Interaction Component: An API wrapper that 
handles communication with language models, manag-
es retries, and standardizes input/output formats (e.g., a 
service that routes requests to Azure OpenAI or local 
Ollama endpoints).

Output Validation Component: A rule-based or 
LLM-based validator that checks outputs for accuracy, 
harmful content, or hallucinations (e.g., a fact-checking 
module that compares generated statements with 
retrieved knowledge).

Response Processing Component: A formatter that 
restructures raw model output into application-appro-
priate formats (e.g., a JSON parser that extracts struc-
tured data from text responses).

Each component addresses a specific function, creat-
ing natural boundaries for both execution and evalua-
tion.

This decomposition yields several practical advantages 
that directly address the limitations of monolithic 
approaches. First, it establishes separation of concerns, 
allowing developers to focus on specific functionality 
without addressing the entire system simultaneously. 
Second, it creates discrete evaluation points where 
inputs and outputs can be validated against defined 
criteria. Third, it simplifies reasoning about system 
behavior by reducing complex interactions to manage-
able units that can be understood and modified inde-
pendently.

Leading organizations have demonstrated these bene-
fits in production. Uber's DragonCrawl, a system for 
automated mobile app testing, uses LLMs to execute 
tests with human-like intuition. While not explicitly 
described as component-driven in Uber's blog, its 
architecture effectively separates concerns into func-
tional areas working together:

A representation component that converts app UI 
screens into text for the model to process

Component-Driven GenAI: Breaking Down the Black Box
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A decision-making component using a fine-tuned 
MPNet model (110M parameters) that determines what 
actions to take based on context and goals

An execution component that implements these deci-
sions as interactions with the app

This structured approach achieved "99%+ stability" in 
November-December 2023 and successfully executed 
end-to-end trips in 85 out of 89 top cities without any 
city-specific tweaks. Most importantly, the system 
required no maintenance—when app changes 
occurred, DragonCrawl figured out how to navigate new 
flows on its own, unlike traditional tests that required 
hundreds of maintenance hours in 2023. The deliberate 
model selection process (evaluating multiple options 
against precision metrics) further demonstrates how 
systematic evaluation leads to reliable production 
systems.

Well-designed interfaces between components further 
enhance system maintainability. By establishing explicit 
contracts for data exchange, these interfaces create 
natural boundaries for testing and make components 
interchangeable. For example, a data retrieval compo-
nent might specify that it accepts natural language 
queries and returns relevant document chunks with 
source metadata and relevance scores. This clear con-
tract allows teams to swap between different retrieval 
implementations (keyword-based, embedding-based, 
or hybrid) without changing downstream components 
as long as the interface remains consistent.

At the heart of reliable GenAI systems lies a simple but 
powerful pattern: each component should have a 
corresponding evaluation mechanism that verifies its 
behavior. This component-evaluation pair creates a 
foundation for both initial validation and ongoing quality 
assurance.

This approach parallels unit testing in software engi-
neering but extends beyond simple pass/fail validation. 
Component evaluations should verify basic functional-
ity, identify performance boundaries, detect drift from 
expected behavior, and provide diagnostic information 
when issues arise. These evaluations serve as both 
quality gates during development and monitoring tools 
during operation.

Real-world implementations demonstrate this pattern's 
effectiveness. Aimpoint Digital built a travel itinerary 
generator with separate evaluations for its retrieval 
component (measuring relevance of fetched results) 
and generation component (using an LLM-as-judge to 
grade output quality). This allowed them to quickly 
identify whether issues stemmed from poor informa-
tion retrieval or flawed generation.

Payment processing company Stripe implemented a 
component-evaluation pair for their customer support 
AI by tracking "match rate" - how often the LLM's 
suggested responses aligned with human agent final 
answers. This simple metric served as both quality gate 
and production monitor for their generation compo-
nent.

The one-to-one relationship between components and 
evaluations enables targeted improvement when issues 
emerge. Rather than making broad changes to address 
vague performance concerns, teams can identify spe-
cific components that require attention. This precision 
reduces both development effort and the risk of unin-
tended consequences from system-wide modifica-
tions.

The metrics from component evaluations form a com-
prehensive dashboard of system health. Engineers can 
monitor these indicators to identify performance deg-
radation before it affects end users—a significant 
advantage over systems where problems become 
apparent only after they impact customers. This proac-
tive approach supports maintenance activities and 
helps prevent production incidents.

When implemented systematically, component evalua-
tions build confidence in system composition. If each 
component demonstrates acceptable performance 
against defined metrics, engineers can combine them 
with greater assurance that the resulting system will 
behave as expected. This compositional reliability 
becomes particularly important as systems grow in 
complexity.

The Component-Evaluation Pair: A Fundamental Pattern
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Conventional development processes often treat eval-
uation as an afterthought—something to be addressed 
after implementation is complete. Eval-first develop-
ment inverts this sequence, establishing evaluation 
criteria before building components. This approach 
ensures that success metrics guide development from 
the outset rather than being retrofitted to match exist-
ing behavior.

The eval-first methodology creates a multi-tiered 
framework that operates at increasing levels of 
abstraction:

At the component level, evaluations function like unit 
tests in software development. These assessments 
verify that individual functional units perform their spe-
cific tasks correctly under various conditions. A retriev-
al component might be evaluated on the relevance of 
returned information across different query types, 
while a summarization component could be assessed 
on factual consistency between source text and gener-
ated summaries. These targeted evaluations provide 
immediate feedback during development and ongoing 
monitoring in production.

Step-level evaluations examine how components 
interact in sequence, similar to integration testing in 
software development. These assessments verify that 
outputs from one component serve as appropriate 
inputs for subsequent components and that the com-
bined functionality meets intermediate requirements. 
For example, step-level evaluation might confirm that a 
classification component correctly routes queries to 
appropriate retrieval components, which then provide 
relevant context to a generation component.

Workflow-level evaluations assess whether the entire 
pipeline satisfies business requirements. These 
system-level tests validate end-to-end performance 
against defined success criteria. For a customer sup-
port system, workflow evaluation might measure reso-
lution rate, customer satisfaction, escalation frequency, 
and handling time. These metrics connect technical 
implementation to business outcomes, providing a 
framework for prioritizing improvements.

Eval-First Development: Starting With Measurement

This layered approach offers significant advantages 
over end-to-end evaluation alone. First, it provides a 
comprehensive view of system performance, identify-
ing issues at multiple levels of granularity. Second, it 
establishes traceability between business metrics and 
component behavior, connecting technical perfor-
mance to business outcomes. Third, it supports incre-
mental improvement by highlighting specific areas that 
require attention.

Organizations that implement eval-first development 
often discover requirements and constraints earlier in 
the development process. By defining how compo-
nents will be evaluated before implementation begins, 
teams identify potential issues when they're least 
expensive to address. This proactive approach reduces 
both development costs and time-to-market for 
reliable systems.
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Practical implementation of component-based GenAI 
workflows requires methodical decomposition of appli-
cations into steps that can be evaluated. This process 
begins with identifying core functions, then establishing 
clear responsibilities and interfaces for each compo-
nent.

Effective breakdown balances granularity with practi-
cality. Each component should have a single responsi-
bility without creating excessive interaction overhead. 
Uber's GenAI Gateway demonstrates this through a 
unified service layer handling 60+ LLM use cases. By 
mirroring OpenAI's API interface, they created stan-
dardized endpoints that separate integration logic from 
application business logic.

Well-designed interfaces specify both data formats 
and semantic requirements. Microsoft's Azure Copilot 
uses RESTful APIs between components like its Knowl-
edge Service (document chunking) and LLM proces-
sors. This enables independent development while 
ensuring components exchange properly structured, 
semantically valid data.

Components and evaluations should be versioned 
together for traceable evolution. Uber's approach allows 
centralized model upgrades - adding GPT-4V required 
only gateway adjustments rather than client changes. 
This containment of version impacts prevents 
system-wide disruptions.

Agentic components require constrained decision 
boundaries. Microsoft implements extensible plugins 
where each Azure service team builds domain-specific 

"chat handlers." These predefined operations maintain 
control while enabling specialized functionality.
Sophisticated fallback mechanisms become possible 
with component isolation. Uber's gateway implements 
automated model fallbacks, switching to internal 
models when external providers fail. This graceful deg-
radation maintains service continuity without compro-
mising entire workflows.

Microsoft's golden dataset approach provides 
versioned benchmarking against 500+ validated ques-
tion/answer pairs. Component updates are tested 
against this dataset before deployment, creating a 
closed feedback loop between evaluation and 
improvement.

Key challenges persist:

1. Initial Investment - Designing interfaces and evalua-
tion frameworks requires upfront resources

2. Skill Gaps - Teams need both software engineering 
and AI expertise

3. Coordination Overhead - Inter-component 
communication adds complexity

Organizations must balance these against the benefits 
of maintainability and incremental improvement. As 
demonstrated by Uber's gateway - now handling 
authentication, PII redaction, and monitoring across all 
LLM interactions - centralized components with clear 
contracts enable scalability while maintaining gover-
nance.

Implementing component-based GenAI workflows 
involves several practical considerations that influence 
their effectiveness in production environments.

Parcha discovered users preferred reliable 
"agent-on-rails" designs over fully autonomous 
systems after their initial agent approach proved too 
unpredictable. RealChar implemented a deterministic 
event-driven pipeline for AI phone calls, achieving low 
latency through fixed processing cycles rather than 
free-form agent architectures.

The organizational implications of component-based 
architecture extend beyond technical considerations. 
PagerDuty formed a centralized LLM service team that 
enabled four new AI features in two months by stan-
dardizing infrastructure across product teams. This 
mirrors how companies established dedicated data 
platform teams during earlier tech waves.

Organizations with established machine learning infra-

structure have a significant advantage when imple-
menting component-based GenAI systems. Many 
foundational MLOps capabilities transfer directly to 
LLMOps with minimal adaptation. For example, existing 
model registry systems can be extended to track LLM 
versions and their performance metrics. Data pipeline 
orchestrators that manage traditional ML workflows can 
be repurposed to coordinate GenAI component execu-
tion. Monitoring systems already watching for ML model 
drift can be adapted to detect LLM performance deg-
radation.

Leading organizations have found that reusing these 
battle-tested MLOps components accelerates GenAI 
adoption while maintaining consistent governance and 
operational standards. Rather than building parallel 
infrastructure, enterprise companies have extended 
their ML platforms to accommodate the unique needs 
of LLMs, preserving the investment in tooling while 
adapting to new requirements.

Implementing Component-Based GenAI Workflows

Practical Considerations
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Resource allocation represents another practical con-
sideration. Component-based architectures require 
investment in infrastructure for component orchestra-
tion, interface management, and comprehensive 
evaluation. These investments compete with feature 
development and other organizational priorities. Suc-

cessful implementation requires executive support 
based on understanding the long-term benefits of 
maintainable, evaluatable systems over short-term 
feature delivery.

Component-based, evaluated workflows provide a 
foundation for sustainable GenAI development that 
extends beyond current capabilities. This approach 
positions organizations to incorporate emerging tech-
nologies without wholesale system replacement.

The field of generative AI continues to evolve rapidly, 
with new model architectures, specialized models, and 
improved techniques emerging regularly. Compo-
nent-based systems can integrate these advances 
incrementally, replacing individual components as 
better alternatives become available. This adaptability 
provides significant advantage in a rapidly evolving 
field, allowing organizations to benefit from technologi-
cal progress without disruptive rebuilding.

The reliability advantage of evaluated components 
becomes increasingly important as GenAI applications 
address critical business functions. Organizations that 
implement systematic evaluation establish quantitative 
evidence of system performance, supporting both 
internal confidence and external trust. This 
evidence-based approach helps organizations navigate 
regulatory requirements, customer expectations, and 
internal governance. As regulatory scrutiny of AI 
systems increases, the ability to demonstrate system-
atic evaluation and quality assurance will become a 
competitive differentiator.

Component evaluation enables continuous, data-driv-
en improvement by providing detailed performance 

insights. Rather than relying on broad assessments or 
anecdotal feedback, teams can analyze compo-
nent-level metrics to identify specific improvement 
opportunities. This targeted approach supports 
efficient resource allocation, directing effort toward 
areas with measurable impact.

Organizations should assess their current GenAI imple-
mentations through the lens of componentization and 
systematic evaluation. This assessment might examine 
several questions: Are system responsibilities clearly 
divided into evaluable components? Do explicit inter-
faces exist between these components? Are evaluation 
metrics defined at component, step, and workflow 
levels? Does the architecture support incremental 
improvement?

The transition from impressive demonstrations to 
reliable production systems ultimately requires both 
technical architecture and organizational commitment. 
Component-based workflows with systematic evalua-
tion provide the technical foundation, while organiza-
tional priorities determine whether this foundation sup-
ports sustainable development or merely adds com-
plexity. Organizations that commit to this 
approach—investing in component design, interface 
definition, and comprehensive evaluation—position 
themselves to deliver not just impressive demonstra-
tions but dependable systems worthy of trust with 
consequential decisions.

Building for the Future

Alex is a Machine Learning Engineer at ZenML. 
He previously worked as a historian and 
researcher but now focuses on LLM and 
GenAI initiatives for ZenML's MLOps and 
LLMOps platform. Alex holds a PhD in War 
Studies from King's College London and a BA 
in Arabic and Persian from SOAS. He's based 
in Delft (Netherlands).

Alex Strick van Linschoten
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Byron Hsu’s
Member of Technical Staff at xAI

Deep Dive: Exploring
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I am currently a member of the technical staff at xAI, working on ML 
systems. I am the creator of Liger Kernel and a committer to SGLang and 
Flyte. I enjoy exploring the intersection of machine learning and systems.

"These are my own opinions and not the position of xAI."

1. Foundational Influences & Strategic 

2. Liger-Kernel Genesis: 

3. Liger-Kernel Innovations:

What specific challenges in large-scale LLM training motivated the creation of Liger-Kernel, 
and how did you conceptualize its core architecture?

Liger-Kernel reportedly boosts throughput by 20% while reducing memory usage by 
60%—could you elaborate on the key innovations, such as kernel fusion and chunking tech-
niques, that make these improvements possible?

Open source AI has undergone a remarkable evolu-
tion—from the advent of transformer architectures to 
the emergence of distributed training paradigms. Could 
you reflect on the groundbreaking research and pivotal 
milestones that first captivated you, and share how 
these influences have shaped your strategic vision for 
fostering community-driven innovation and transpar-
ency?

The pivotal milestone papers for me to realize the 
importance of LLM systems are ZeRO and vLLM. ZeRO 
proposed an innovative algorithm to shard weights on 

the fly while maintaining low communication cost in 
order to train big models. vLLM proposed paged atten-
tion to efficiently manage KV cache with optimal 
memory utilization in order to serve big models.

LLMs are powerful yet need lots of work to build strong 
LLM system to run efficiently, both for training and 
inference. ZeRO and vLLM are the best proofs of the win 
of open source. There are countless follow-up works of 
them and they enable numerous developers or 
researchers to innovate models more efficiently.

Liger-Kernel originated from the need at LinkedIn to 
train LLMs efficiently. We suffered from critical perfor-
mance bottlenecks that hindered large-scale training 
on large datasets. We started by optimizing the distrib-
uted training level, adopting tools like DeepSpeed, FSDP, 
and Megatron. However, we realized the gains were 
insufficient, so we decided to go one level lower to the 

kernel level. The goal of Liger Kernel is to provide a 
performant yet easy-to-use kernel library tailored for 
LLM training. We have done much of the heavy lifting in 
performance optimization underneath, while keeping 
the interface friendly and integrating nicely with popu-
lar frameworks like Hugging Face

We mainly utilize kernel fusion, in-place operations, and 
chunking techniques to optimize performance. Kernel 
fusion minimizes data transfer time between GPU 
memory, which is effective for bandwidth-bound 
kernels like RMSNorm or RoPE. We use chunking to avoid 
large logits materialization for large-vocabulary models. 
Instead of generating output logits all at once, we 

generate them chunk by chunk. This can effectively 
reduce memory usage by approximately 60% 
end-to-end. We also employ in-place operations to 
reuse memory sitting idle, which saves tensor creation 
time and reduces memory consumption.
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4. Engineering Trade-offs:
How do you navigate the balance between computational efficiency and maintaining preci-
sion in AI model training, especially within multi-GPU environments?

Balancing efficiency, precision, and model quality 
requires careful model and system co-design. There are 
mainly two approaches for trading precision with 
efficiency: kernel-level and modeling-level. At the 
kernel level, we can use INT8/FP8/FP4 quantization to 
achieve more TFLOPs because low-precision tensor 

cores are faster. However, we need careful upcasting 
and downcasting to preserve model quality. At the 
model level, we can perform compression and pruning. 
Both are lossy operations and require careful execution 
by running numerous experiments.

5. Integration & Ecosystem:
What critical considerations come into play when integrating cutting-edge open source AI 
solutions into established enterprise infrastructures?

Flexibility, scalability, and performance are three key 
factors I would consider for adopting open-source AI 
into an enterprise. First of all, every enterprise has its 
own specific requirements. For example, in LLM infer-
ence, some enterprises prioritize throughput, while 
others focus on latency. The project must be flexible 
enough to meet these different needs. Secondly, the 
solutions have to be scalable. Running on thousands of 
GPUs is a very different challenge from running on a 
single GPU. It is extremely difficult to make a project 
scalable if it is not designed to be so from the start. A 

good indicator is whether existing adopters are operat-
ing at a scale similar to your enterprise. Thirdly, people 
should run careful benchmarks to measure perfor-
mance in advance. Benchmarks reported in papers are 
not always accurate due to variables like hardware and 
hyperparameters. Enterprises should conduct bench-
marks using their own workloads and hardware to mea-
sure actual performance before making a decision.

6. Community Collaboration:

7. Future Horizons:

How has community collaboration influenced your projects, and can you share an instance 
where external contributions led to a pivotal breakthrough?

Looking ahead, which emerging trends in hardware acceleration and open source AI most 
excite you, and how do you envision they will reshape the industry?

Community is a big driver for open-source projects, 
including Liger Kernel. One of our essential features, Flex 
Chunk Loss—the first optimized open-source 
post-training losses—was inspired by the open-source 
community. The PyTorch team provided a prototype of 
implementing chunking with torch compile. We gener-

alized the solution and applied it to more post-training 
losses like DPO, ORPO, and GRPO, achieving approxi-
mately 80% memory reduction. It turned out to be a 
huge success and helped many post-training 
researchers.

companies like DeepSeek release multiple GPU kernels 
during their recent open-source week. I believe this can 
democratize GPU efficiency and accelerate AI progress.

I am excited by the growing trend of open-source GPU 
kernels. They have been notorious for their difficulty to 
develop and debug for the general public because they 
require a deep understanding of GPU hardware and 
considerable insider knowledge. It is awesome to see 

"These are my own opinions and not the position of xAI."
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Inside Vectara’s 

AI Journey: 
In a candid conversation with Marktechpost, Amr Awadallah—CEO of Vectara 

and veteran of Yahoo and Cloudera—shares his vision on blending open 
source with proprietary innovation, ensuring the reliability of AI outputs, 

differentiating Vectara’s platform, and offering advice for entrepreneurs 
and developers working in production-level open source AI.

The integration of open source and proprietary 
elements in our AI solutions isn’t a one-size-fits-all 
answer—it’s about aligning the approach with your 
business model. If your goal is to build a project purely 
for community success, a fully open source approach 
with permissive licenses like Apache or MIT might be 
the right path. However, the challenge with a fully open 
model is that while it can create a phenomenal product 
(just think of the Apache web server), monetization 
becomes nearly impossible.

At Cloudera, we learned early on that building a busi-
ness requires more than offering support on top of 
open source. That model—charging for support after 
giving away the code—has a natural ceiling. Customers 
might only pay enough to cover the salary of one engi-
neer until they decide to build the solution internally or 
simply leverage a hyperscaler’s resources.

So many companies have evolved towards an “open 
core” model: the core functionality is open source, but 

enhanced features or performance improvements are 
available only to paying customers. For instance, while 
Apache Spark is completely open source, providers like 
Databricks have layered proprietary functionalities on 
top when delivering fully managed cloud services.

At Vectara, we’re taking a slightly different approach 
called “open perimeter.” Our core remains propri-
etary—guarding our critical competitive advantag-
es—while we open source components that sit on the 
platform’s edge. For example, we’ve open sourced our 
hallucination evaluation model. This not only generates 
community interest but also serves as a gateway to 
attract developers and users. Our internal version is 
even more refined—about 20% more accurate and sup-
porting additional languages—ensuring that our paying 
customers receive enhanced performance. In essence, 
while the open source elements build engagement, the 
proprietary core enables us to extract value and 
provide a competitive edge.

Dr. Awadallah, with your extensive background from Yahoo, Cloudera, and now 
leading Vectara, how do you approach integrating open source and 
proprietary methods when developing AI solutions? 

At its heart, our platform is not just about stopping 
hallucinations—it’s about building an AI assistant plat-
form that is robust, secure, and scalable across busi-
ness applications. The framework we employ has four 

pillars:

1. Platform Approach:
We deliver a comprehensive end-to-end platform that 

Vectara’s ‘trusted GenAI’ framework is generating buzz for tackling issues like 
hallucinations and bias. How does your platform address these challenges 
while still leveraging open source technology?
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allows businesses to build AI agents and assistants 
without reinventing the wheel each time. Think of it as 
how you use a database—there’s no need to cobble 
together multiple disparate open source components 
to achieve functionality. Instead, you have one well-in-
tegrated platform.

2. Accuracy and Reliability:
Accuracy, for us, involves two main aspects. First, we 
tackle hallucinations—ensuring that the generated 
outputs are reliable. Second, we focus on the “R” in 
retrieval augmented generation (RAG). While the gener-
ation of text has become somewhat commoditized, 
retrieving the right information from a vast corpus is the 
real challenge. Our secret sauce is our highly optimized 
retrieval process that finds the most relevant “needles” 
in the haystack of company data. We also incorporate a 
hybrid  system where the open source hallucination 
detection is complemented by our enhanced internal 
model.

3. Security:
Large language models are vulnerable to prompt 

attacks—much like social engineering with humans. 
Imagine someone tricking the AI into revealing sensitive 
data. To mitigate such risks, we enforce rigorous 
role-based and entity-based access controls. Our 
platform ensures that sensitive data remains compart-
mentalized and only accessible to those with the 
proper clearance.

4. Explainability and Observability:
In regulated industries like finance or healthcare, merely 
getting an answer isn’t enough—you need to know the 
source of that answer. Our system is built with built-in 
explainability. It tracks the provenance of every piece of 
data used in the answer, allowing businesses to verify 
and audit the reasoning process. This transparency is 
crucial not only for compliance but also for continuous 
improvement.

In summary, our trusted GenAI framework builds a 
production-ready system where each AI-generated 
answer is fact-checked through rigorous retrieval and 
detection processes, while the open source elements 
accelerate our development pace.

The fundamental innovation lies in delivering an 
end-to-end platform that functions like a data-
base—removing the need to assemble a myriad of open 
source tools into a makeshift solution. Traditional 
enterprise search systems often require you to inte-
grate components like document parsers, indexing 
services, and various AI models manually. With Vectara, 
you interact with a single, cohesive API.

This unified approach allows for dynamic adjustments. 
For instance, our system can automatically select the 
appropriate embedding or ranking model based on the 
language, context, or even the type of document. 
Whether it’s a PDF, a PowerPoint, or an image of a 
diagram, our platform evaluates and selects the best 
strategies to retrieve and process that information.
Another key differentiator is our dynamic ranking 
mechanism. Every document in our system can be 
enriched with metadata—like author details, time-

stamps, security levels, and even user feedback such as 
upvotes and downvotes. This metadata isn’t just stored; 
it actively influences our scoring functions so that, for 
example, the most recent version of an HR policy is 
ranked above older versions. Additionally, real-time 
updates are a built-in feature. If a document is found to 
be outdated or inaccurate (say, an incorrect answer 
about pizza cheese), it can be corrected immediately, 
ensuring that the system learns and evolves continu-
ously.

Finally, our hallucination detection stands out. We have 
engineered a classifier model with around 600 million 
parameters that can detect factual inconsistencies in 
milliseconds. This speed and accuracy are crucial when 
integrating multiple data sources in real time—allowing 
our clients to confidently rely on the system even in 
high-stakes environments.

There’s a wave of innovation on the horizon that’s 
reshaping how we think about and implement AI solu-
tions. One significant trend is the move towards multi-
modal AI. Today, most systems are optimized primarily 
for text, but tomorrow they’ll need to process images, 
diagrams, video, and even voice concurrently. Imagine 
an AI that can interpret a Kubernetes cluster diagram 
without the text, or extract meaningful insights from a 
video by understanding both visual cues and audio 
patterns. We’re already working on solutions that bridge 

these modalities—leveraging open source tools where 
they excel and integrating our own enhancements 
where needed.

Another trend is the evolution of AI agents. We’re tran-
sitioning from basic retrieval augmented generation 
(RAG) to more advanced systems that decompose 
complex queries into multiple sub-queries. These 
agents can coordinate across various data sourc-
es—from SQL databases to microservices—and 

What innovations set Vectara’s platform apart from traditional enterprise 
search and the emerging wave of generative AI solutions?

Looking ahead, what breakthrough trends in open source AI do you anticipate 
will redefine production environments over the next five years?
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seamlessly integrate the results. While many of these 
solutions are still in their infancy, I see a future where AI 
agents manage transactional processes—like filing a 
vacation request or ordering supplies on your behalf. 
However, given the current hallucination rates, truly 
transactional AI won’t be mainstream until we achieve 
near-zero error rates in factual accuracy.

Beyond multimodality and intelligent agents, the next 

wave will likely focus on ensuring that AI systems are not 
just powerful but also safe. As these systems take on 
more critical tasks, the need for robust safety nets, 
real-time monitoring, and explainability will only inten-
sify. We may see widespread adoption of what I call 
“authentic transactions” where AI systems not only 
retrieve and generate data but also perform safe, verifi-
able transactions in high-stakes environments.

There are two major pieces of advice I’d offer, and they 
target two different audiences: the developers creating 
open source projects and the entrepreneurs building 
businesses.

For developers, focus on building something that genu-
inely works and brings value to the community. Your 
primary goal should be functionality and adoption—let 
the community help you refine and improve your proj-
ect. Open source thrives on collaboration; if your proj-
ect is solid and addresses real pain points, you’ll natu-
rally attract contributors and users.

For entrepreneurs, the message is different. Do not start 
with the technology for its own sake. Instead, begin by 
identifying a clear customer problem. Ask yourself: 
What pain point am I solving? Why will my solution 
command a premium? Too often, I see pitches that 
focus solely on the underlying technology, neglecting to 

articulate the market need or the specific use case that 
justifies a business model. Remember, technology is 
merely a means to an end—it’s the value you create for 
your customers that counts.

Another crucial piece of advice for early-stage startups 
is to embrace agility—not just in your product roadmap 
but also in your team dynamics. Every team member’s 
performance is critical. Be prepared to make tough 
decisions early on. Your time and the speed at which 
you iterate are your most valuable assets in a competi-
tive market.

Ultimately, the key is balance: leverage open source to 
accelerate development, but always build a compelling 
business case around solving a real-world problem. The 
market will reward those who can combine technical 
excellence with a deep understanding of customer 
needs.

Dr. Amr Awadallah is the CEO and Co-founder of Vectara, 
a company that is enabling organizations and enterprises 
to leverage GenAI in business applications by reducing 
risks from hallucinations, bias, copyright infringement, and 
model weight pollution.
      
Amr previously served as Vice President of Developer 
Relations for Google Cloud. Prior to joining Google in 
November 2019, Amr co-founded Cloudera in 2008, and 
as Global Chief Technology Officer, he spent 11 years work-
ing closely with enterprises around the world on how to 
ingest and extract value from big data (he famously 
coined the concept of “schema-on-read vs sche-
ma-on-write”). Cloudera went public in 2017 on the New 
York Stock Exchange, and was acquired by KKR + CD&R in 
2021 for $5.30 billion.
      
Earlier in his career, Amr served as Vice President of Prod-
uct Intelligence Engineering at Yahoo! from 2000-2008. 
He joined Yahoo after they acquired his first startup, 
Aptivia, in mid-2000, which was a search engine for online 
product information. Amr received his PhD in Electrical 
Engineering from Stanford University, and his Bachelor’s 
and Master’s Degrees from Cairo University, Egypt. 

Amr is one of 10 luminary scientists and technologists that 
were granted honorary citizenship to Saudi Arabia in 2021.

Finally, what key advice would you offer aspiring entrepreneurs and develop-
ers who are eager to harness open source AI in production environments?

Dr. Amr Awadallah
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encing performance will be an increasingly important 
benchmark on the roadmaps for all of the major edge 
chip and device makers for years to come.

This increased computing capability coincides in a 
perfect storm with the evolution of open source small 
language models. The open source foundation models 
released in the second half of 2024 and beginning of 
2025 in the size range of 3B-14B are truly stunning in 
their improvements from previous vintages and, in our 
estimation, can likely meet 90%+ of all enterprise RAG 
and Agent tasks today. The latest releases from Qwen 
2/2.5 series, Llama 3.2+ series, along with Mistral, Yi, 
DeepSeek and Phi-4 from Microsoft, all represent sub-
stantial improvements in smaller models from 1–14B 
parameters over the previous generations. The AI PC 
becomes the perfect deployment platform for the 
widespread roll-out of specialized lightweight applica-
tions and workflows that leverage these open source 
small language models. In addition, high quality multi-

modal vision-to-text models (Qwen-VL, Llama, Phi-Vi-
sion) can run on the edge, and will only get faster in 
time. It is reasonable to believe that with increased 
model improvements over the next 12-18 months, virtu-
ally all language-based use cases, will be achievable by 
models in this size range, and deployable on an AI PC.
In 2025, many Windows enterprise users will experi-
ence local edge inferencing with small open source 
models for the first time — and on an AI PC . It will be 
eye-opening to most users the extent that high-quality 
models can be run relatively quickly and easily, locally 
on a laptop. 

As more enterprises have the capability at scale to run 
high-quality models up to 14B parameters on their local 
equipment, privately, securely and at $0 incremental 
inference costs, how does this change the paradigm of 
how AI gets rolled-out?

At LLMWare.ai, we have been focused on local deploy-
ment of small language models for enterprise RAG and 
Agent automation since the very first day of launching 
in open source in October 2023. Our mission has 
remained true to today and we believe even more 
strongly that bringing AI capabilities to your data, 
whether data centers or directly to laptops such as AI 
PCs (laptops or PCs with integrated GPU or NPU accel-
eration for AI inferencing), is the future. 

It might be difficult at first to appreciate the nexus 
between the AI PC and the open source AI community, 
but we will make the case that it may be the single 
most important new technology for open source AI 
enterprise adoption in 2025 - and offers a transforma-
tional opportunity for deploying open source AI models 
at scale across the enterprise.

The AI PC is an initiative started by Microsoft in early 
2024 as encouragement to chip manufacturers and 
OEMs to expand the neural processing capabilities in 
Windows laptops, desktops and workstations, including 
GPU, NPU and CPU. There are targets set in “trillions of 
operations per second” (TOPS) in 2024, with the first 
scale enterprise roll-outs of these AI PCs happening in 
2025. An increasing number of standard-issue corpo-
rate laptops from Dell, HP and Lenovo will have 40+ 
TOPs available in GPUs and NPUs, from chip manufac-
turers such as Intel, AMD and Qualcomm. It is expected 
that more than 150 million AI PCs will be sold in 2025, as 
enterprises refresh their laptops and that 60% of 
laptops and PCs sold will be AI-capable by the end of 
2027. 

It is likely that 2025 marks the beginning of a virtuous 
cycle over the next few years, in which OEMs and 
chip-makers compete to increase TOPs generation, 
software developers increasingly build out the low-level 
enabling capabilities, application developers write 
features that leverage these TOPS capabilities, and 
enterprises adopt at scale as standard operating 
procedure. Today, on AI PCs, models up to 32 billion 
parameters (with quantization/optimization) can be run 
in day-to-day work, all at zero incremental token costs 
and with zero risk of data exposure - with up to 14B 
parameters running at great inferencing speed. It is 
reasonable to believe that what runs pretty fast in 2025 
will run very fast in 2026-2027 – and that model infer-

AI PCS – 
A BIG 
MOMENT 
FOR OPEN 
SOURCE AI

AI PC meets the Small Model moment

by
DARREN OBERST, 
CTO, LLMWare.ai
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encing performance will be an increasingly important 
benchmark on the roadmaps for all of the major edge 
chip and device makers for years to come.

This increased computing capability coincides in a 
perfect storm with the evolution of open source small 
language models. The open source foundation models 
released in the second half of 2024 and beginning of 
2025 in the size range of 3B-14B are truly stunning in 
their improvements from previous vintages and, in our 
estimation, can likely meet 90%+ of all enterprise RAG 
and Agent tasks today. The latest releases from Qwen 
2/2.5 series, Llama 3.2+ series, along with Mistral, Yi, 
DeepSeek and Phi-4 from Microsoft, all represent sub-
stantial improvements in smaller models from 1–14B 
parameters over the previous generations. The AI PC 
becomes the perfect deployment platform for the 
widespread roll-out of specialized lightweight applica-
tions and workflows that leverage these open source 
small language models. In addition, high quality multi-

modal vision-to-text models (Qwen-VL, Llama, Phi-Vi-
sion) can run on the edge, and will only get faster in 
time. It is reasonable to believe that with increased 
model improvements over the next 12-18 months, virtu-
ally all language-based use cases, will be achievable by 
models in this size range, and deployable on an AI PC.
In 2025, many Windows enterprise users will experi-
ence local edge inferencing with small open source 
models for the first time — and on an AI PC . It will be 
eye-opening to most users the extent that high-quality 
models can be run relatively quickly and easily, locally 
on a laptop. 

As more enterprises have the capability at scale to run 
high-quality models up to 14B parameters on their local 
equipment, privately, securely and at $0 incremental 
inference costs, how does this change the paradigm of 
how AI gets rolled-out?

After the Big Flagship AI Chatbot project, there is no 
standard “second” AI project in the enterprise. Rather, 
there are 100 next projects, typically among different 
departments and teams, sometimes in chat, and often 
in some workflow automation or offline or batch 
processing, in which there is a high intersection of 
corporate documents and sensitive knowledge-based 
processes. Usually, this is where cost, complexity, and 
deep integration into the fabric of the enterprise is 
needed – and this presents the perfect entry points for 
small open source models. The question remains, how-
ever, how to set up in a cost effective and practical 
way?  

Traditional AI deployments can be a challenge for these 
use cases. Once you get past the high-volume, 
high-concurrency, continuous batching chat use case 
with relatively massive compute scale, there are these 
100 projects with “moderate volume, moderate con-
currency” requirements – and for anyone who has tried 
to set up these types of cost-efficient, but high-quality 
inference servers, there is the fundamental challenge of 
balancing GPU utilization with managing memory satu-
ration – at reasonable cost. There will be spikes and 
valleys in users, and potentially many hours with negli-
gible (if any) inferencing traffic. However, to handle 
usage spikes, enterprises are still required to provision a 
larger infrastructure, and it is really easy to saturate 
GPU memory with even a few concurrent users (in a 
relatively modest GPU setup). Utilization and cost can 
be a major challenge in these “moderate volume” use 
cases — combined with all of the usual issues such as 

BCP, redundancy, test and dev environments, security, 
authentication, token tracking for charge-backs, need 
for 24X7 up time, user expectations on inferencing 
performance, need to monitor and manage a complex 
environment, change management, etc.  

On the other hand, if you think of a different topology, 
the problem looks very different. A thought experiment 
for anyone new to AI PCs: What if you keep the docu-
ments on a private cloud or data center server with 
retrieval mechanisms, and then distribute the model 
inferencing to the edge?  For many of these “moderate” 
use cases (e.g., 1–14B parameter models accessed by a 
group of tens to low hundreds of people), there is a 
strong case to be made that distributing the models for 
local inferencing results in radically lower costs. In this 
scenario, rather than pushing data “up” to a public 
cloud API, push it “down” to a secure corporate laptop, 
and run the inferencing at zero incremental cost.  

While this may sound very retro or radical, depending 
on your perspective, there is a good analogy for this 
topology. This is the way that most of us work with 
databases today in the enterprise. A very small number 
of people directly touch the database, but they create 
extracts, reports and pivot tables, and send to business 
users who then drop into Excel, and run the analysis and 
do the work directly on their laptop CPU. In this 
common scenario, the data is “pushed down” by a 
filtering and retrieval mechanism, and then the real 
analysis and interaction is all done locally.

The AI PC is an initiative started by Microsoft in early 
2024 as encouragement to chip manufacturers and 
OEMs to expand the neural processing capabilities in 
Windows laptops, desktops and workstations, including 
GPU, NPU and CPU. There are targets set in “trillions of 
operations per second” (TOPS) in 2024, with the first 
scale enterprise roll-outs of these AI PCs happening in 
2025. An increasing number of standard-issue corpo-
rate laptops from Dell, HP and Lenovo will have 40+ 
TOPs available in GPUs and NPUs, from chip manufac-
turers such as Intel, AMD and Qualcomm. It is expected 
that more than 150 million AI PCs will be sold in 2025, as 
enterprises refresh their laptops and that 60% of 
laptops and PCs sold will be AI-capable by the end of 
2027. 

It is likely that 2025 marks the beginning of a virtuous 
cycle over the next few years, in which OEMs and 
chip-makers compete to increase TOPs generation, 
software developers increasingly build out the low-level 
enabling capabilities, application developers write 
features that leverage these TOPS capabilities, and 
enterprises adopt at scale as standard operating 
procedure. Today, on AI PCs, models up to 32 billion 
parameters (with quantization/optimization) can be run 
in day-to-day work, all at zero incremental token costs 
and with zero risk of data exposure - with up to 14B 
parameters running at great inferencing speed. It is 
reasonable to believe that what runs pretty fast in 2025 
will run very fast in 2026-2027 – and that model infer-

Open Source is perfect for the next 100 enterprise AI projects – but how to deploy?
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For fifty years, since the old mainframe roamed the 
earth and dominated computing, the humble database 
read and write has been at the core of the computing 
paradigm and arguably has been driving compute 
topologies, e.g., a database is a shared resource that 
needs to be accessed by multiple clients (put it on a 
server that can support concurrency and multiple 
client connections of a large shared resource).

Arguably over the last twenty years, the web transac-
tion, usually backed up a database read and write, has 
supplemented the database as the transaction du jour 
that drives computing topologies, resulting in increas-
ing thinner clients as more of the processing is picked 
up by the web server, which also must be designed to 
handle concurrency of users and connections, often 
times as a “front end” or middle-end server connecting 
to a back-end database.

Both the database and web transaction pulled work-
load and processing from the endpoint client — as most 
of the good stuff was sitting on the shared server 
resource.

The AI PC represents a turning point in which model 
inferencing becomes the marginal requirement that 
drives the next wave of computing – and unlike the 
shared resource nature of database and web transac-
tions, model inferencing is much more like a singleton 
compute-driven process that can be easily distributed.
The PC revolution was captured best by Bill Gates’s 
radical vision of a PC on every desk, at a time when 
most thought that “real computing” operated on a 
mainframe (e.g., the “frontier models” of their day), with 
many questions about use cases and viability of the PC 
as hobbyist electronic toys. How ironic (but also quite 
fitting) would it be if Microsoft’s push around the AI PC 
becomes a tipping point from the current era of Cloud 

Computing “centralization” back towards more decen-
tralization and localized deployment?

Will we have inferencing on every desktop? And if so, 
what does this mean for the ongoing cloudification of 
everything — does that trend reverse or rebalance? 
Furthermore, what does this mean for the competitive 
landscape between the cloud providers and edge 
device OEMs and chipmakers — does this mark a turn-
ing point in the relationships and competitive dynamics 
between the cloud providers and the device OEMs and 
chip makers — is everyone essentially fighting for the 
same incremental compute inference unit?

There has been a lot of ink spilled over the last two 
years about all of the ways that generative AI could be 
disruptive to the computing landscape, and require 
new paradigms for how to manage and deploy IT and 
address concerns about data privacy, safety and cost.
What if the solution for enterprise deployment of 
generative AI is hiding in plain sight and unlocked by the 
AI PC — don’t reinvent your enterprise for AI, rather bring 
AI directly into the (sometimes forgotten and ignored) 
computing laptop backbone of the company and lever-
age a lot of existing infrastructure?

What if model inferencing over time looks more the 
spreadsheet, rather than the data warehouse?
What if model inferencing has zero incremental cost?
What if data is “pushed down” to the user device for 
inferencing, rather than data moving “upwards” to a 
centralized cloud service for processing?

What if the frontier models — and all of their complexity 
and cost — start to look like the mainframes of the AI 
world — useful for a relatively small number of tasks, 
while most of the world opens up their laptops and runs 
their generative AI workloads locally?

The AI PC represents a transformative moment for open 
source AI in the enterprise. By bringing powerful, smaller 
open source models directly to local devices, enter-
prises can achieve a radical shift in how AI is 
deployed—securely, privately, and at zero incremental 
inference costs. This new model challenges the 
cloud-centric paradigm, offering a practical and scal-
able path forward for the "next 100" enterprise AI proj-
ects that often demand moderate volume, moderate 
concurrency, and deep integration into business 

processes. As AI PCs become more prevalent, the 
opportunity for open source AI to thrive at the edge 
could lead to a significant rebalancing of the computing 
landscape—one where inferencing at the desktop 
becomes as commonplace as running a spreadsheet, 
and where the future of AI deployment is as much 
about decentralization as it is about raw processing 
power.

Turning point – inferencing as the workload that drives computing

Conclusion: Open Source and the AI PC – A Turning Point for Enterprise AI
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Open-source LLMs are Closing the Gap with Commercial Models

Let’s face it: OpenAI has been a game-changer making 
it easy to rapidly build prototypes with large language 
models (LLMs). In just a few days, an engineer can 
develop a powerful demo for a new GenAI feature using 
OpenAI’s APIs. But when it’s time to move these LLMs 
into full-scale production, engineering teams are 
increasingly saying “no thanks” to commercial solu-
tions. 

Why? Because open-source alternatives—like Deep-
Seek R-1, Llama 3.3, and Qwen 2.5 —now deliver perfor-

mance on par with (and sometimes better than) their 
proprietary counterparts, all while consuming fewer 
resources and safeguarding valuable IP. No more vendor 
lock-in, no more sharing sensitive data; just cost-effec-
tive and efficient AI. The real question isn’t whether to 
ditch commercial providers but how soon you can 
make the jump to open-source. Let’s explore the moti-
vation for open-source models and the path to 
production in more detail.
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Safeguarding IP and Avoiding Vendor Lock-In

If you’re building mission-critical AI applications, then 
relying on locked-down LLMs from a commercial 
vendor can become more of a liability than an advan-
tage. These closed-source models are a black box, 
restricting access to the model source code and 
prohibiting you from exporting model artifacts, thus 
making it impossible to move on. If you’re planning or 
actively using commercial models, then you need to 
first consider these key pain points:

Data Control: Handing your sensitive data to a 3rd 
party model provider is a huge risk. Keeping everything 
in-house means you stay in the driver’s seat, especially 
for industries handling regulated or sensitive PII.

Intellectual Property: AI is becoming the heart of 
countless products, and you don’t want to be stuck 
layering a thin UI on top of someone else’s locked-down 
API. Owning your model is the key to true innovation 
(and peace of mind) and only way to avoid lock-in.

Production SLAs: Commercial APIs can introduce 
unpredictable latency and reliability issues into the mix. 
When you own the entire stack, you also own perfor-
mance guarantees—no more crossing your fingers and 
hoping a third-party service stays up.

Open-source models once seemed less capable, but 
developments in fine-tuning have changed the narra-
tive. Fine-tuned open-source models now regularly 
outperform large commercial models while remaining 
significantly smaller in size. To illustrate this point, we 
published the Fine-tuning Model Leaderboard 
(https://pbase.ai/leaderboard), a series of benchmarks 
that compares the performance of fine-tuned 
open-source LLMs against OpenAI models across 30 
distinct tasks—85% of the fine-tuned models outper-
form GPT-4.

Fine-tuning isn’t just about performance and shaping 
the model to your use case—it’s a gateway to faster 
inference speed and reduced costs. Take this 
real-world example: Checkr, the leader in automated 
background checks, fine-tuned Llama-3-8B and saw 
over a 10-point bump in accuracy, a 30x speedup in 
inference, and a 5x cost reduction compared to GPT-4 
(detailed story: https://pbase.ai/checkr). That’s the kind 
of ROI that open-source, tailor-made AI can deliver.

The Rise of Specialized Models: Smaller, Faster, Cheaper
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Fine-tuning an existing open-source model is generally 
a more efficient path to customization than training a 
new model from scratch. When you start fresh, you 
need enormous amounts of data, computing power, 
and time—all of which can quickly become prohibitive. 
In contrast, fine-tuning builds on the existing strengths 
of a pre-trained model, letting you adapt it to your spe-
cific tasks or domains without investing in a full, 
resource-intensive training pipeline.

Within fine-tuning, LoRA-based fine-tuning has 
emerged as a game-changer and the industry standard. 

By adjusting fewer than 1% of a model’s parameters, 
LoRA delivers performance comparable to a fully 
custom-trained model—but at a fraction of the cost, 
time, and compute. The traditional approach of full 
fine-tuning (fine-tuning all of the model’s parameters) 
ties up GPUs for days or weeks, whereas LoRA speeds 
things up by freezing most parameters and focusing on 
lightweight adapters. The end result? You get nearly the 
same top-notch performance for specialized domains 
without sinking a fortune or enduring lengthy training 
cycles

For years, Reinforcement Learning (RL) and fine-tuning 
belonged to completely different worlds. On one hand, 
fine-tuning is all about supervised learning: you train a 
model on labeled data, and it learns to predict the 
correct outputs for given inputs. On the other hand, RL 
focuses on decision-making in dynamic environments: 
an agent interacts with its surroundings, gets feedback 
(rewards), and adapts based on trial and error. Enter 
Reinforcement Fine-Tuning (RFT), a new twist on apply-
ing RL principles to fine-tuning tasks.

We won’t explore all of the intricacies of RFT, but the 
opportunity for model customization is important to 
understand. One of the historic blockers that teams 
faced when fine-tuning models was securing the requi-

site labeled data for training. With RFT-based tech-
niques, you can now adapt models for your use case 
without needing massive amounts of data. There are 
three scenarios where RFT shines:

You can’t provide labeled data, but you can verify 
the output: If you don’t have explicit ground truth data 
but can still check for correctness (like transpiling 
source code), RFT handles the use case beautifully.

You have labeled data—but barely any: If you’re work-
ing with under 100 labeled examples, RFT outperforms 
standard fine-tuning approaches that often choke on 
limited datasets.

You see a big boost from chain-of-thought reason-
ing: When your model benefits significantly from 
step-by-step logic at inference time (e.g. complex 
math problems or game strategy), RFT is built to capi-
talize on that advantage.

RFT makes it even easier to customize open-source 
LLMs and train your own reasoning models akin to 
DeepSeek-R1 for a broad range of powerful use cases. 
You can learn more about that in this blog post: 
https://pbase.ai/RFT-vs-SFT

The Path to Efficient Fine-tuning with LoRA

The Future of Fine-tuning with Reinforcement Learning
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For years, Reinforcement Learning (RL) and fine-tuning 
belonged to completely different worlds. On one hand, 
fine-tuning is all about supervised learning: you train a 
model on labeled data, and it learns to predict the 
correct outputs for given inputs. On the other hand, RL 
focuses on decision-making in dynamic environments: 
an agent interacts with its surroundings, gets feedback 
(rewards), and adapts based on trial and error. Enter 
Reinforcement Fine-Tuning (RFT), a new twist on apply-
ing RL principles to fine-tuning tasks.

We won’t explore all of the intricacies of RFT, but the 
opportunity for model customization is important to 
understand. One of the historic blockers that teams 
faced when fine-tuning models was securing the requi-

site labeled data for training. With RFT-based tech-
niques, you can now adapt models for your use case 
without needing massive amounts of data. There are 
three scenarios where RFT shines:

You can’t provide labeled data, but you can verify 
the output: If you don’t have explicit ground truth data 
but can still check for correctness (like transpiling 
source code), RFT handles the use case beautifully.

You have labeled data—but barely any: If you’re work-
ing with under 100 labeled examples, RFT outperforms 
standard fine-tuning approaches that often choke on 
limited datasets.

While open-source LLMs present a compelling path 
forward, the process of getting them to a robust 
production state has its own hurdles:

Fine-Tuning Complexity: Not all teams have the 
machine learning and MLOps expertise to fine-tune 
effectively.

Infrastructure Management: Deploying LLMs requires 
scalable and reliable infrastructure to handle real-world 
demands.

Quality Assurance & Ethics: AI systems need guard-
rails to ensure they’re safe, secure, and aligned with 
organizational values.

That’s where specialized platforms like Predibase come 
into play. By offering managed, developer-friendly solu-
tions with easy-to-use fine-tuning capabilities, and 
production-ready serving infrastructure, you can 
unlock the true potential of open-source LLMs without 
sacrificing control or performance.

We’re witnessing a fundamental shift: the move from 
behemoth commercial models to fine-tuned, 
open-source solutions that deliver both efficiency and 
IP ownership. As organizations look to differentiate 
themselves through custom AI, specialized models will 
become the standard—providing superior perfor-
mance, lower costs, and the assurance of data privacy. 

For developers and AI teams, the message is clear:

Stay Nimble: Evaluate open-source solutions to 
avoid technical and contractual lock-in.

Own Your IP: Safeguard your data and models by 
taking control of your AI pipeline.
Leverage Fine-Tuning: Customize smaller models 
that can outperform larger commercial options.

Scale Responsibly: Invest in platforms or tools that 
simplify infrastructure and ensure best practices in 
security, privacy, and ethics.

This new era of AI is all about ownership, specialization, 
and efficiency. Open-source LLMs are poised to lead 
the charge, ushering in a future where developers can 
innovate faster, cut costs, and truly take control of their 
AI destiny.

You see a big boost from chain-of-thought reason-
ing: When your model benefits significantly from 
step-by-step logic at inference time (e.g. complex 
math problems or game strategy), RFT is built to capi-
talize on that advantage.

RFT makes it even easier to customize open-source 
LLMs and train your own reasoning models akin to 
DeepSeek-R1 for a broad range of powerful use cases. 
You can learn more about that in this blog post: 
https://pbase.ai/RFT-vs-SFT

Charting a Course to Open-Source Production

Looking Ahead: Custom AI as a Competitive Edge

Devvret Rishi 
CEO and Cofounder 
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VERDICT: 
A LIBRARY FOR 

SCALING JUDGE-TIME 
COMPUTE

Despite tremendous progress in AI through scaled 
train-time and inference-time compute, AI remains 
unreliable in open-ended, non-verifiable domains. The 
key limitation is not generation—it is evaluation. Specifi-
cally, it is evaluation that is aligned with human taste, 
that is capable of generalizing to in-the-wild examples, 
and that is operationalizable at scale. Therefore, the 
next big leap for AI comes from gains in judging AI 
outputs. The next frontier is judge-time scaling. In 
service of this future, we developed Verdict, a fully open 
source library for scaling judge-time compute. 

A Verdict judge is not an ordinary LLM-as-a-judge. A 
Verdict judge leverages greater inference-time com-
pute for accurate, reliable, and calibrated evaluation. A 
Verdict judge draws from patterns in scalable oversight, 
HCI, reward modeling, and more. A Verdict judge is 
applicable across arbitrary domains and tasks. Of chief 
significance, a Verdict judge simply works very well.

Verdict judges amplify AI development across a wide 
range of use cases, including at least the following:

Scaled evaluation of AI systems
Runtime guardrails and oversight
Verification to aid inference-time compute
Rewards during reinforcement learning
Synthetic data filtering

In this article, we break down why we created the 
Verdict library, what Verdict is, and finally how we can 
leverage Verdict for powerful downstream applications.

Verdict judges are able to achieve SOTA on the evalua-
tion tasks of hallucination detection, content modera-
tion, and fact-checking. Verdict judges even beat out 
reasoning models like o1 and o3-mini at a fraction of 
their latency and cost, as shown below!

Introduction

By: Nimit Kalra & Leonard Tang
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Automated correctness checks using LLMs, a.k.a. 
LLM-as-a-judge, is a widely adopted practice for both 
developers and researchers building LLM-powered 
applications. However, LLM judges are painfully unreli-
able. Today's LLM judges struggle with inconsistent 
output formats, mode collapse, miscalibrated confi-
dence, superficial biases towards answer positioning, 
data frequency, model family, length, style, tone, safety, 
and numerous other failure modes. This makes the 
problem of evaluation twice the trouble, as both the 
evaluator and evaluatee may be unreliable.

One promising solution is to scale up judge-time com-
pute — the number of inference tokens used for judg-
ing. We do this in a very particular way: by composing 
judge architectural primitives grounded in the scalable 

oversight, automated evaluation, and generative reward 
modeling research.

This is the foundation of Verdict, our open source 
library for building compound systems to scale up 
judge-time compute. Verdict provides both the primi-
tives (Units) and execution framework for building such 
systems. Instead of a single LLM call to produce a judge 
result, Verdict Judges combine multiple units of 
reasoning, verification, debate, and aggregation into a 
single judge system. This judge-time scaling allows 
Verdict systems to produce impressive results on eval-
uation tasks, oftentimes beating out even frontier 
reasoning models like o1 and o3-mini at a fraction of the 
cost and latency. 

At the heart of Verdict are

1. Primitives for judging (Units), and 
2. Methods for linking, orchestrating, and executing 
systems of Units. 

Basic Anatomy of a Unit 

A Unit is the fundamental building block of a judge 
system. A unit is composed of the following: 

Prompt: The instructions for how a Unit should function.

Model: The model that the Unit calls to generate 
responses.

Scale: The domain that generated values must be 
restricted to. For example, the 1–5 Likert Scale, or the 
Yes/No Scale, or the Safe/Unsafe Scale, or any other 
ordinal or categorical Scale.

Input Schema: The values and types the Unit can 
accept, either from a previous Unit or from raw 
user-provided input.

Response Schema: The values and types the Unit’s 
model can generate.
Output Schema: The values that are ultimately gener-
ated by the Unit. This usually involves either postpro-
cessing values produced by the Response Schema or 
updating a cumulative state from prior Units. These 
values get passed to the subsequent Unit. 

The structure of a Unit solves two major pain points 
of standard LLM judges: 

1. The output structure of the judge is predictable even 
for small language models, governed in particular by the 
Scale, Response Schema, and Output Schema.

2. Format and function are specified separately. The 
Prompt implements the evaluation logic— the func-
tion—of the Unit, while the Scale and Schemas manage 
the format of the Unit. 

In the context of a Verdict system, Units that are 
chained together are also automatically typechecked. 
The Output Schema of a Unit must match the Input 
Schema of its subsequent Unit. This allows for informa-
tion to flow through a compound judge system in a 
stable and predictable fashion.

Motivation: Towards Better LLM Judges

Verdict Mechanics
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Units on their own only re-implement existing 
LLM-judge methods, albeit in a more reliable and
consistent fashion. Stitching them together, however, 
unlocks the full power of Verdict and increased infer-
ence-time compute. Combining Units with the right 
architecture priors can yield impressive results across a 
variety of evaluation, judging, and reward modeling 
tasks.

Verdict draws inspiration from deep learning libraries 
like PyTorch vis-à-vis managing Unit groups and inter-
actions. The most fundamental organizational principle 
is that of a Layer, which is a list of Units. This is 

Verdict enables us to create complex judge protocols in 
just a few lines. For example, the following 
20-line-or-so architecture enables us to reach SOTA 
on the ExpertQA evaluation task:

analogous to how neural network layers are a list of 
neurons.

A standard Layer propagates information through a 
judge system in a feedforward fashion. By default, sub-
sequent Layer’s Units receive the output of previous 
Layer’s Units in a one-to-one fashion, and Units within a 
Layer are fully independent of one another. However, it 
is possible to customize Unit behavior both within a 
Layer (using keyword inner=) and between current and
subsequent Layers (using keyword outer=). Below are 
common instances of how Units can be
stitched together from Layer to Layer.

Verdict judges can be used anywhere to replace human 
feedback and verification. Naturally, they apply to at 
least the following scenarios:

1. Automated Evaluation of AI Applications. Verdict 
judges enable tailored and automated evaluation of AI 
applications.

2. Run-Time Guardrails. Verdict judges are guardrails 
that sit on top of AI applications running in production.

3. Test-Time Compute Scaling. Verdict judges are verifi-
ers that help rank, prune, and select candidates during 
test-time compute scaling.

4. Reward Modeling & Reinforcement Learning. Verdict 
judges provide signal in reinforcement learning — 
particularly in settings where rewards are not verifiable.
Verdict is well-suited for general-purpose verification, 

given that it is:

1. More general than fine-tuned reward models. VER-
DICT judges readily apply across different tasks and 
domains, as seen by our experiments on safety moder-
ation, checking for factual and logical correctness, and 
hallucination detection.

2. More stable and reliable compared to simple LLM 
judges. VERDICT judges beat out all simple LLM judges 
(and fine-tuned evaluators), barring the o1 models on 
JudgeBench, on the three tasks presented here.

3. Capable of generating soft rewards, unlike verifiers in 
formal settings like mathematics or programming.

4. Relatively low-latency and cost-efficient, which is 
necessary for methods leveraging heavy infer-
ence-time compute.

Stitching Units Together

Verdict for Evaluators, Guardrails, Verifiers, and 
Reward Models
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To summarize, we introduce Verdict: a modular, expres-
sive, and flexible approach to automated evaluation of 
LLM outputs. By enabling the composition of diverse 
reasoning units—such as verification, debate, and 
aggregation—Verdict enhances the robustness, inter-
pretability, and accuracy of LLM judges. 

Verdict judges achieve SOTA or near-SOTA across a 
wide range of challenging evaluation tasks, including 
safety moderation, factual verification, and hallucina-
tion detection. Notably, Verdict-based judges—without 
any bespoke customization—surpass both 1) models 
that are finetuned specifically for each evaluation task, 
as well as 2) orders-of-magnitude larger judge models. 
This highlights Verdict’s potential as an efficient and 
scalable alternative for AI evaluation. 

Nimit Kalra is Member of Technical Staff on the research 
team at Haize Labs, where he is focused on aligning and 
robustifying real-world AI systems. Nimit’s research 
develops methodologies across adversarial robustness, 
uncertainty calibration, and automated evaluation, 
working toward building reliable, interpretable AI 
systems. Previously, he spent time at Citadel and in 
computer vision/robotics research, with an emphasis 
on domain adaptation. He is based in New York City and 
enjoys hiking, karaoke, and road trips

Beyond immediate performance gains, Verdict serves 
as a unified framework for building more transparent 
and adaptable evaluation pipelines. By offering a flexi-
ble architecture for reasoning and decision-making, we 
hope Verdict will enable researchers and practitioners 
to develop more reliable, interpretable, and scalable AI 
evaluation systems, advancing automated evaluation, 
oversight, and AI alignment in the broader machine 
learning community.

We are excited to see what evaluators, verifiers, reward 
models, and guardrails the broader ML community 
chooses to build with Verdict: https://github.com/hai-
zelabs/verdict. 

Leonard Tang is the Co-Founder and CEO of Haize Labs, 
where he works on solving the ultimate extant problem 
of AI: ensuring its robustness, quality, and alignment for 
any application. Prior to this, his research covered 
adversarial robustness, mathematical reasoning pitfalls, 
computational neuroscience, interpretability, and 
language models. Leonard dropped out of, before start-
ing, Stanford PhD in computer science to pursue Haize 
Labs. In the very limited time he spends outside the 
company, he enjoys playing the guitar.

Empowering Researchers
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Boris  
Yangel

Head of AI R&D at 

Could you please tell us a bit about your career and how you end up working for Nebius? 

My background is in machine learning and engineering, 
and I've been working at the intersection of these fields 
for more than 15 years. My career began in search and 
ranking at Yandex, where I worked on improving image 
search quality and later led the image search relevance 
team. After that I worked at Machine Learning Group at 
Microsoft Research Cambridge, where I focused on 
automated Bayesian inference and Infer.NET inference 
framework. I then came back to Yandex, where I led the 
ML team responsible for launching its voice assistant, 
Alice. It is now a flagship product of the company, with 
more than 60M MAU. I've then transitioned to Yandex 

Self-Driving Group, where I worked on neural world 
models and planning for self-driving vehicles and food 
delivery robots for several years. I then transitioned to 
deep learning for drug discovery at Charm Therapeu-
tics before joining Nebius AI. At Nebius, I lead the AI R&D 
team, where we focus on exploring ways to improve 
large-scale AI training infrastructure, fine-tuning meth-
ods, and agentic systems. What drew me to Nebius was 
the opportunity to apply my expertise in ML and engi-
neering at large scale, working with state-of-the art 
computing infrastructure and systems.
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As the Head of AI R&D at Nebius AI, can you explain the role of your team within the company 
and why AI research is essential to Nebius's mission? 
Our AI R&D team serves two main purposes. First, we 
conduct research that aligns with our core busi-
ness—providing computing infrastructure and resourc-
es to AI developers. This helps us discover innovations 
that could evolve into new products while also improv-

ing our understanding of customer needs. Second, we 
act as large-scale internal users of our products. By 
running demanding AI workloads ourselves, we ensure 
our infrastructure is robust, scalable, and ready to meet 
the needs of our customers. 

Could you describe the infrastructure and tools your team uses and how they support your 
open-source initiatives?

We operate large GPU clusters with NVIDIA H100 and 
H200 GPUs connected by InfiniBand networks. This 
setup handles compute-intensive tasks like training 
complex models and running large-scale simulations. 
We use JAX for its performance and flexibility, although 
we've had to develop some tools ourselves where the 
ecosystem was lacking.

One example is our long-sequence attention library, 
which enables efficient processing of lengthy sequenc-
es across multiple GPUs or nodes. We open-sourced it 
to help address this gap in the ecosystem and to sup-
port others working with long-context models.

Another major challenge for the community is the lack 
of high-quality datasets—both problem datasets and 
agent trajectories—needed to train and evaluate AI 
agents. Collecting these datasets is expensive and 
requires scalable infrastructure to validate problems, 
set up environments, and ensure data quality. Our infra-
structure allows us to handle these challenges 
efficiently, which is why we've released datasets to sup-
port the development of AI agents.

This is just the beginning. We plan to release more tools, 
datasets, and other artifacts in the future to help the AI 
community move faster and build better systems.  

Your team has been investigating agentic systems, particularly for software engineering. 
Could you share more about this focus and its significance? 

Our interest in AI agents comes down to three key 
points: 

1. Understanding Customer Needs: 
As developers increasingly use our infrastructure to 
build and deploy AI agents, we need to understand their 
challenges and requirements. This helps us improve our 
offerings. 
  
2. Preparing for the Future: 
We anticipate that AI agents will eventually buy and 
manage computing resources on their own. By devel-
oping these systems in-house, we're ensuring our infra-
structure is ready for that shift. 

3. Making AI More Accessible: 
We're interested in whether building powerful agents 
will remain limited to a few leading labs or whether it's 
possible using open models. If the latter is true, we aim 
to support and accelerate that process. 
  
Software engineering is a great testbed for AI agents 
because their results can be verified. Success in this 

area can significantly accelerate software develop-
ment, including the development of AI itself. It's a 
domain where you can clearly measure progress, which 
makes it easier to evaluate different techniques and 
approaches. 
  
We started by exploring guided search techniques, 
which help agents systematically explore different 
solutions and learn which approaches work best. This 
method has allowed us to both improve agents built on 
open-weight large language models and boost the 
performance of more powerful models like GPT-4o. But 
guided search is just a starting point. Our long-term 
goal is to use reinforcement learning to create agents 
that continuously improve by learning from their 
mistakes. This involves creating feedback loops where 
agents analyze their past performance, refine their 
decision-making, and apply those lessons to new tasks. 
One way to build this loop is by repeatedly distilling 
systems that use guided search back into large 
language models, making them more efficient and 
capable over time. 
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